Synthesis, Characterization and Cytotoxic Activity of Diorganotin(IV) Complexes with 4*H*-Pyrido[1,2-*a*]pyrimidin-4-one Derivatives

Talal A. K. Al-Allaf,*†‡ Redha I. H. Al-Bayati,§ Luay J. Rashan‡¶ and Rula F. Khuzaie●

* Department of Chemistry, College of Science, University of Mosul, Iraq, § Department of Chemistry, College of Science, University of Al-Mustansirya, Baghdad, Iraq, ¶ Department of Biology, College of Education, University of Mosul, Mosul, Iraq, and • Department of Medical Technology, Faculty of Medical Science, Applied Science University, Amman, Jordan

The coordination behaviour of the diorganotin(IV) compounds R₂SnCl₂ (where R = Me, Ph) with 4H-pyrido [1,2-a] pyrimidin-4-one derivatives (L) has been described. The complexes R₂SnCl₂·L obtained have been characterized physicochemically and spectroscopically. The pyrimidin-4-one ligands were found to coordinate with R₂SnCl₂ species in a monodentate fashion, mainly via the oxygen atom of the 4-one group or possibly via the nitrogen atom of the —C=N linkage (the less sterically hindered nitrogen of the pyrimidine derivative) to give pentacoordinate tin complexes. Of the complexes selected to be screened against five tumour cell lines, some exhibited significant in vitro activity.

Keywords: organotin; pyrimidin-4-one derivatives; complexes; cytotoxicity

INTRODUCTION

Organotin(IV) compounds and their complexes with various ligands have found many applications in biomedicine, and several articles and reviews dealing with their anti-pathogenic bacteria and antitumour activities have been reported. ¹⁻⁶

In view of the importance of such complexes, as a combination of our previous work⁷⁻⁹ we describe in the present work the preparation and proper-

ties of R₂SnCl₂ complexes of some 4*H*-pyrido[1,2-*a*]pyrimidin-4-one derivatives (Scheme 1) as donating ligands having multiple donor sites and examine the cytotoxic activity of some of these complexes against five tumour cell lines.

L1: R1 = H , R2 = 2 - CH2Br

L2: R1 = 7 - CH3 , R2 = 2 - CH2Br

L3: R1 = 8 - CH3 , R2 = 2 - CH2Br

L4: R1 = H , R2 = 3 - CH3COO

L5: R1 = 7 - CH3 , R2 = 3 - CH3COO

L7 : R = 2 - CH₃
L8 : R = 3 - CH₃COO

Scheme 1 The ligands used in coordination with R_2SnCl_2 compounds.

[†] Author to whom correspondence should be addressed.

[‡] Present address: The Arab Pharmaceutical Manufacturing Co. Ltd, PO Box 42, Sult, Jordan.

EXPERIMENTAL

General

The ¹H NMR spectra were recorded at Yarmook University, Irbid, Jordan, on a Bruker-WH 80 DS spectrometer, using CDCl₃ as solvent with TMS as internal standard. IR spectra were recorded on spectrometer SP2000 in the 200-4000 cm⁻¹ using Nujol mull and CsI discs. Analysis of the complexes was carried out using a CHN Analyser, Type 1106 (Carlo Erba). Electronic spectra were recorded on a Uv/Vis spectrophotometer, Shimadzu Koyoto model 160 (Japan), using DMF as solvent. Conductivity measurements were carried out on 10⁻³ molar solutions of the complexes in ethanol, nitromethane and DMF at room temperature (25 °C), using a conductivity meter, model 4070 (Jenway).

Preparation of starting materials

The compounds Me₂SnCl₂ and Ph₂SnCl₂ were prepared by standard methods. ^{10,11} The ligands, 4H-pyrido[1,2-a]pyrimidin-4-ones, L¹–L⁸ (Scheme 1), were prepared by a standard method. ¹² The structures of the ligands were established by NMR.

Preparation of complexes R₂SnCl₂ · L

The complexes were prepared according to the following standard method.

The diorganotin(IV) compound R_2SnCl_2 (R = Me or Ph) (1 mmol) was dissolved in the minimum volume of dry chloroform and then added to a solution of the pyrimidin-4-one ligand (L), prepared by dissolving the ligand (1 mmol) in the minimum volume of chloroform at ambient temperature or if necessary under moderate heating.

The resulting solution was evaporated to ca one-quarter of its original volume by direct heating on a hotplate. N-Hexane was added to the point of turbidity and the mixture was left in the refrigerator for several hours. The crystalline product thus formed was filtered off, washed several times with n-hexane and dried under vacuum for several hours. The yield was almost quantitative. Melting points were sharp and elemental analysis was used for characterization.

Biological tests

Cell lines

Hep-2 (human carcinoma of larynx), HeLa (human cervical carcinoma), RD (human embryonal rhabdomyosarcoma), L_{20B} (mouse L-cells containing human polio-virus receptors¹³) and BGM (African green monkey cells) were kindly supplied by Al-Basheer Hospital, Amman, Jordan. All cells except L_{20B} were maintained in minimum essential medium (MEM) and supplemented with 5% fetal calf serum (ICN–Flow Laboratories, UK), L-glutamine and antibiotics (100 units of penicillin and 100 μg ml⁻¹ of streptomycin. L_{20B} cells were maintained in Dulbecco's MEM (DMEM) (Sigma Chemical Co., USA) and supplemented with 10% fetal calf serum and antibiotics.

Cytotoxicity tests

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay was performed in a 96-well plate. 14, 15 The above cell lines $(1 \times 10^6 \text{ cells ml}^{-1})$ were seeded in each well with 100 µl of growth medium and 10% fetal calf serum and antibiotics. After overnight incubation $(37 \, ^{\circ}\text{C}, 5\% \, \text{CO}_2), 10 \, \mu \text{l}$ of the sample solution was added to each well and incubated for 48-72 h. Then 10 μ l of MTT (5 mg ml⁻¹) was added to each well and the plates were incubated for a further 4 h. Later, 25 µl of 10% SDS-0.01 M HCl solution was added to each well. The optical density was recorded using a microplate reader at 540 nm. Three separate sets of controls containing the solvents (10% DMSO) were used in each plate. The IC_{50} (µg ml⁻¹) was calculated using the probit test.

RESULTS AND DISCUSSION

The physical properties of the diorganotin(IV) complexes are listed in Table 1 and the 1H NMR data of the complexes $Me_2SnCl_2 \cdot L$ are listed in Table 2. The elemental composition of the complexes prepared is clearly assigned to a 1:1 ratio of organotin compound to ligand, i.e. $R_2SnCl_2 \cdot L$.

From Scheme 1 (Ligands L₁-L₅) it can be seen that only two active donor sites, i.e. the N-1 and O atoms of the pyrimidin-4-one ring, occur and it appears that the remaining nitrogen atom of the pyrimidine nucleus would be inactive from the

Table 1 The physical properties and analysis of the diorganotin complexes R₂SnCl₂·L^x

			Analysis	Analysis (%): Found (Calcd)	i (Calcd)	Selected II	Selected IR bands ^a (cm ⁻¹)				
Complex	Colour	(), 4 M	ر	I	2	$\nu(C=N)$	ν(C=0) (Δυ)	v(Sn-O)	()-uS)"	"(Sn_(T)	UV/Vis
Complex	COIOGII	M.P. (C)	ا ر	=		(45)	(44)	(NI_IIC)	(J=11)	V(301-C1)	Amax (IIIII)
$Me_2SnCl_2 \cdot L^1$	Off-white	9890	28.7	3.0	0.9	1578 m	1722 s	434 w	267 m	291 m	376
• • •	. !		(28.8)	(2.8)	(6.1)	(0)	(27)		;	;	
Ph ₂ SnCl ₂ ·L'	White	126-128	43.0	3.0	5.0	1582 m	1722 s	450 m	234 w	280 w	275, 309, 376
•			(43.25)	(5.9)	(4.8)	3	(27)				
$Me_2SnCl_2 \cdot L^2$	Pale yellow	82-84	30.0	3.0	5.7	1595 m	1722 s	492 w	552 m, sh	280 m	267
Ph.SnCl. · L ²	Yellow	137–139	(30.5) 4 1.5	(3.2)	(5.9) 4.9	(10) 1583 m	(27) 1700 s	455 m	m 292	300 m	209 275 309 384
7,0,007			(44.2)	(3.2)	(4.7)	(-2)	(5)				00,100,100
Me,SnCl, · L ³	Off-white	90-92	30.3	3.0	5.8	1590 m	1682 s	434 m	502 w	296 s, sh	275, 309, 378
1			(30.5)	(3.2)	(5.9)	(10)	(-13)				
$Ph_2SmCl_2 \cdot L^3$	Milky	100-102	44.55	3.05	4.8	1583 w	1655 s	452 m	238 w	271 s, sh	208, 275, 309, 378
			(44.2)	(3.2)	(4.7)	(3)	(-40)				
Me ₂ SnCl ₂ ·L ⁴	Yellow	7981	35.0	3.45)	6.7	1585 m	1710 s, 1776 m	449 m	494 w	280 w	386
			(34.0)	(3.3)	(9.9)	(5)					
$Ph_2SnCl_2 \cdot L^4$	Pale yellow	128-129	48.0	3.2	5.1	1580 s	1695 s, 1765 m	470 m	245 w	293 m, sh	386
			(48.2)	(3.3)	(5.1)	<u> </u>					
$Me_2SnCl_2 \cdot L^5$	Pale yellow	135-136	35.3	3.8	6.25	1580 ш	1670 m, 1740 s	486 m	537 m, sh	286 m	384
			(35.6)	(3.7)	(6.4)	(7-)	(-20), (-5)				
Ph ₂ SnCl ₂ · L ⁵	Pale yellow	177-179	49.0	3.45	5.1	1591 s	1685 m, 1740 s	494 m	245 w	270 w	251, 384
			(49.1)	(3.6)	(2.0)	(4)	(-5), (-5)				
$Me_2SnCl_2 \cdot L^6$	Pale yellow 149-151	149-151	23.0	2.5	6.1	1572 m	1670 s	479 m	269 m	265 s, sh	275, 309, 349, 480
			(23.2)	(2.44)	(0.9)	(12)	(-15)				
$Ph_2SnCl_2 \cdot L^6$	Off-white	154-156	37.9	2.7	4.9	1560 m	1685 s	457 s, sh	242 w	280 s, sh	275, 309, 349, 397
			(38.7)	(2.55)	(4.8)	9	(o)				
$Me_2SnCl_2 \cdot L^7$	White	216–218	36.0	3.3	0.9	1575 m	1695 m	490 w	577 m, sh	270 s, sh	275, 309
			(35.8)	(3.2)	(6.4)	(-12)	(15)				
$Ph_2SnCl_2 \cdot L^7$	Pale yellow 22	223–224	49.0	3.1	4.9	1575 m	1695 s	480 m	245 w	285 s	275, 308, 349
			(49.3)	(3.2)	(2.0)	(-12)	(15)				
Me ₂ SnCl ₂ · L ⁸	Creamy	164-165	35.2	3.1	5.7	1573 m	1670 m, 1740 s	468 w	547 w	296 s, sh	275, 312, 349
			(35.0)	(5.9)	(2.8)	(-17)	(-20), (-10)				
$Ph_2SnCl_2 \cdot L^8$	Creamy	177-178	46.9	3.3	4.4	1575 w	1672 m, 1740 m	449 ш	554 w	290 m, sh	267, 317, 346
			(47.7)	(3.0)	(4.6)	(-15)	(-18), (-10)				

² IR spectra recorded with Nujol mull: s, strong; m, medium; w, weak; sh, shoulder. ν(C=C) values appeared at ca 1620 cm⁻¹. (Δν) values were measured as

viewpoint of steric hindrance. In addition, ligands L⁴ and L⁵ might have an additional coordination site, i.e. the O atom of the CO group (CH₃COO). In the case of ligands L⁶, L⁷ and L⁸) an additional possible coordination site is available (the S atom); nevertheless, tin metal (considered to be in the border region of the soft-hard Lewis acid concept) usually coordinates to hard Lewis bases, e.g. O or N, sites. Therefore, coordination of sulphur with tin in this case was excluded and this is clear from the IR spectral data. On this basis, we discuss the interaction between R₂SnCl₂ and the pyrimidin-4-one derivatives.

NMR spectra

The ¹¹⁹Sn-CH coupling constant is a very good indicator for the evaluation of the coordination number of tin. 16 It is very clear from the 2J (119Sn-CH) values, which range from 68.5 to 71.5 Hz (Table 2), that the ligand has coordinated to tin in a monodentate fashion, 7, 17, 18 regioselectively, via the most reactive donor site of this ligand, to give pentacoordinate tin species. The ¹H NMR signals of the organic residues of the Me₂SnCl₂ · pyrimidine complexes remained almost constant when compared with the free solvent.12 pyrimidine using the same Furthermore, the ¹³C NMR spectrum for the complex Me₂SnCl₂ · L⁸ showed additional support for our argument; $\delta_{Me} = 7.1 \text{ ppm}$ and $J(^{119}\text{Sn}-^{13}\text{C}) =$ 560 Hz. The coupling constant obtained is typical for pentacoordinate tin species. 16, 17, 19 The carbon-13 NMR signals of the rest of the organic moiety were similar in their chemical shifts to those of the free ligand, apart from C-4 (Scheme 1) in which the chemical shift in the free ligand (157.7 ppm) was shifted downfield by ca 7 ppm $(\delta = 164.5 \text{ ppm})$, confirming that coordination of this ligand with Me₂SnCl₂ takes place via the O atom of C-4.

IR spectra

Since these pyrimidin-4-one derivatives serve as monodentate ligands in their coordination with tin, and the most likely donor sites are either N-1 or O of C-4 of the ligand, one would expect that the values of $\nu(C=N)$ or $\nu(C=O)$ modes of the ligands before and after complexation should show which site of the ligand was involved in the coordination. However, if we take into consideration that the coordination of these ligands with tin via O of C-4, or N-1, would result in a significant change in the $\nu(C=0)$ and $\nu(C=N)$ values respectively, one can predict, from Table 1, the type of interaction between these ligands and R₂SnCl₂. Moreover, the band appearing in the region 430-490 cm⁻¹ is tentatively attributed to $\nu(Sn-O)$ or $\nu(Sn-N)$; they are close together and rather difficult to separate. Other absorption

Table 2 ¹H NMR data^a, δ (ppm) and J (Hz) for Me₂SnCl₂ · L^x complexes

		Ligand (L	^r) assignmen	ignments					
L ^x	δMe ² J (¹¹⁹ Sn–CH)	δ(HC-2)	δ(HC-3)	δ(HC-5)	δ(HC-6)	δ(HC-7)	δ(HC-8)	δ(others)	
L¹	1.23 s (69)		6.6 s	9.0 d ^b $J = 7.0$		7.7–7.8 m (2H)	7.3 d $J = 7.5$	CH ₂ , 4.4 s (2H)	
L^2	1.23 s (70.1)	-	6.5 s	9.0 d $J = 7.1$	7.03 dd $J = 7.5, 4$	-	7.5 d $J = 4.0$	CH ₂ , 4.35 s (2H) CH ₃ , 2.60 s (3H)	
L^3	1.25 s (71.2)	_	6.6 s	$8.95 \text{ d}^{\text{b}}$ J = 7.1	7.08 t $J = 7$	7.65^{b} $J = 7.5$	_	CH ₂ , 4.4 s (2H) CH ₃ , 6.6 s (3H)	
L ⁴	1.23 s (71.4)	9.075	-	$9.3 d^b$ J = 7.0		7.8–8.0 m (2H)	$7.45 \text{ d}^{\text{b}}$ J = 6.6	CH ₃ , 3.95 s (3H)	
L ⁵	1.22 s (68.7)	9.03 s		9.16 d J = 7.1	7.15 d $J = 7.1$	-	7.6 d $J = 1.5$	CH ₃ , 2.58 s (3H) CH ₃ COO, 3.95 s (3H)	
L^6	1.21 s (69)	_	6.4 s	8.0 d J = 7.1	7.1 d** $J = 7.1$	_		CH ₂ , 4.3 s (3H)	
L ⁷	1.21 s (68.4)	_	6.26 s		7.4–7.7 m (2H)	9.05 dd $J = 2.0, 5.0$	7.4-7.7 m (1H)	CH ₃ , 2.4 s (3H)	
L ⁸	1.20 s (69.1)	8.8 s		9.18 dd $J = 9.0, 1$.4	7.5–7.9 m (2H)		CH₃COO, 4.0 s (3H)	

^a downfield from internal TMS at room temperature: s, singlet; d, doublet; dd, doublet of doublets, m, multiplet signals.

^b Poorly resolved doublet of doublets.

Table 3 Cytotoxic activities of $Me_2SnCl_2 \cdot L^x$ complexes against different tumour cell lines

	IC ₅₀ (µg ml ⁻¹)									
Lx	Hep-2	HeLa	RD	L _{20B}	BGM					
L ¹	1.5	1.7	0.16	>10	0.17					
\bar{L}^3	2.3	1.4	0.9	>10	2.2					
L ⁴	5.5	7.5	4.9	>10	5.9					
L ⁶	2.5	3.2	0.35	>10	0.85					
L ⁷	9	6.8	>10	>10	0.85					
L ⁸	>10	>10	>10	>10	>10					
Cisplatin	1.8	5.3	>10	>10	>10					

bands due to $\nu(Sn-Cl)$, $\nu(Sn-C)$ (for C aliphatic and aromatic) and $\nu(C=C)$ modes were also observed and assigned.

The UV/vis spectral data of the complexes showed absorption bands at maxima at ca 210, 275, 310 and 380 nm which are due to charge-transfer transitions of the ligands. The d-d transitions caused by the metal are usually unobservable due to obscuring by the ligand charge-transfer bands. In the present case, only a few complexes showed absorption bands at maxima at ca 400 and 480 nm due to d-d transitions.

Molar conductivities for 10^{-3} M solutions of the complexes ($R_2SnCl_2 \cdot L$) in three different solvents, ethanol, nitromethane and DMF, were in the ranges 4–27, 11–25 and 5–57 Ω^{-1} cm² mol⁻¹ respectively. These figures suggest nonconductive species, 20 i.e. non-ionic complexes, [$R_2SnCl_2 \cdot L$], in the solvents used.

Cytotoxicity tests

All selected complexes for cytotoxicity tests, i.e. Me₂SnCl₂ · L were already purified before testing, by recrystallization from chloroform/hexane. Their cytotoxic activities against different cell lines are shown in Table 3. The complexes tested showed variable cytotoxic activities against the cell lines used in the present study. However, the only cell line that was resistant to all complexes at the concentrations used was L_{20B} . Furthermore, the complex Me₂SnCl₂ · L⁸ showed no cytotoxic activity against the cell lines $(IC_{50} > 10 \,\mu g \,ml^{-1}).$

The most notable activity was demonstrated by the complex Me₂SnCl₂·L¹ (Table 3). The IC₅₀ value of this complex is superior to that of cisplatin (Bristol-Myers, USA), expecially against the RD and Hela cells. Other complexes showed

moderate cytotoxic activities and can be arranged according to their activity in the ligand sequence as follows: $L^3 > L^6 > L^4$ and L^7 .

Based on these results, the following conclusion can be drawn. Ligands containing the CH₂Br moiety enhanced the cytotoxicities whereas ones containing CH₃ or CH₃COO reduced them. Nevertheless, *in vivo* investigations are required to confirm such activities.

REFERENCES

- A. Saxena, J. P. Tandon and A. J. Crowe, *Polyhedron* 4, 1085 (1985).
- 2. A. K. Saxena, Appl. Organomet. Chem. 1, 39 (1987).
- A. K. Saxena and F. Huber, Coord. Chem. Rev. 95, 109 (1989).
- 4. M. Gielen, A. El-Khloufi, M. Biesemans, F. Kayser and R. Willem, *Appl. Organomet. Chem.* 7, 201 (1993).
- R. Willem, M. Biesemans, M. Boualam, A. Delmotte, A. El-Khloufi and M. Gielen, Appl. Organomet. Chem. 7, 311 (1993).
- M. Gielen, M. Biesemans, A. El-Khloufi, J. Meunier-Piret and R. Willem, J. Fluorine Chem. 64, 279 (1993).
- 7. T. A. K. Al-Allaf, R. H. Al-Bayati and S. H. Khalaf, Appl. Organomet. Chem. 7, 635 (1993).
- 8. L. J. Rashan, M. Mohammed, A. Aziz, T. Al-Allaf and K. Sulayman, *Boll. Chim. Farmac.* (*Italy*) 133, 18 (1994).
- 9. T. A. K. Al-Allaf, M. A. Al-Shama'a and L. J. Rashan, Appl. Organomet. Chem. in press (1996).
- B. J. Aylett, Organometallic Compounds, Vol. 1, part II, Chapman and Hall, London, 1979, p. 177, and references therein.
- A. G. Davis and P. J. Smith, in: Comprehensive Organometallic Chemistry, Wilkinson, G., Stone, F. G. A. and Abel, E. W. (eds), Pergamon, Oxford, 1982, Chapter 11, p. 519.
- R. I. H. Al-Bayati, M. T. Ayoub and J. M. A. Al-Rawi, *Iraqi J. Chem.* 16(2), 168 (1991); T. A. Al-Allaf, R. I. Al-Bayati and S. K. Daood, *Mu'tah J. Res. Stud.* (*Jordan*) 7, 223 (1992).
- P. A. Pipkin, D. J. Wood, V. R. Racaniello and P. D. Minor, *J. Virol. Methods* 41, 333 (1993).
- 14. T. Mosmann, J. Immunol. Methods 65, 55 (1983).
- C. M. Tsai, A. F. Gazdar, C. Allegra, R. P. Perng and B. S. Kramer, *Int. J. Cancer* 46, 101 (1990).
- 16. T. A. K. Al-Allaf, J. Organomet. Chem. 306, 336 (1986).
- T. A. K. Al-Allaf, U. Kobs and W. P. Neumann, J. Organomet. Chem. 373, 29 (1989).
- T. A. K. Al-Allaf and M. A. Al-Tayy, J. Organomet. Chem. 391, 37 (1990).
- T. A. K. Al-Allaf, J. M. A. Al-Rawi and A. O. Omar, Iraqi J. Chem. 15, 22 (1990).
- S. F. A. Kettle, Coordination Compounds, Thomas Nelson, London, 1975.