REVIEW

Organotin compounds in agriculture since 1980 Part I. Fungicidal, bactericidal and herbicidal properties

Alan J Crowe

International Tin Research Institute, Kingston Lane, Uxbridge, Middlesex UB8 3PJ, UK

Received 25 June 1986 Accepted 21 October 1986

The object of this review paper is to provide a guide to agrochemical research involving organotin compounds which has been performed since 1980. The information is presented in tabular form and Part I is divided into main sections as indicated by the title. Each section is then subdivided to cover the various commercial organotin compounds. A final subsection lists investigations involving novel compounds. A table of the contents has been provided to enable ease of reference.

Keywords: Agrochemicals, organotin, triphenyltin, tricyclohexyltin, trineophyltin, fungicide, bactericide, herbicide

CONTENTS

Part 1—Fungicidal, bactericidal and herbicidal properties

Introduction

Section 1 Fungicidal and bactericidal properties
Table 1.1 Fungi and bacteria included in
Section 1

Table 1.2 Fungicidal and bactericidal investigations involving fentin acetate

Table 1.3 Fungicidal and bactericidal investigations involving fentin hydroxide

Table 1.4 Fungicidal and bactericidal investigations involving fentin chloride

Table 1.5 Fungicidal and bactericidal investigations involving cyhexatin

Table 1.6 Fungicidal and bactericidal investigations involving novel organotins

Section 2 Herbicidal properties

Table 2.1 Herbicidal investigations involving novel organotins

References

INTRODUCTION

Organotin compounds have a wide range of industrial applications.¹ It has been estimated² that some 35 000 tons per year are currently being produced and that of that figure agrochemicals represent 3000 tons per year.¹

The use of organotins in agriculture was pioneered in the 1950's and early 1960's by van der Kerk and co-workers.³⁻⁷ The first commercial products were introduced during the early 1960's: triphenyltin acetate (fentin acetate: Brestan) by Hoechst and triphenyltin hydroxide (fentin hydroxide: Duter) by Philips Duphar. Both compounds are effective against almost the same range of fungi as the copper fungicides, but at about one-tenth the dosage.8 They are also recommended for the control of leaf spot on sugar beet and celery, blast on rice, berry disease on coffee and for algal control on paddy rice.8 A third triphenyltin compound, the chloride (fentin chloride: Brestanol) also produced by Hoechst is now used, although to a lesser extent.

A few years later saw the introduction by Dow of the acaricide tricyclohexyltin hydroxide (cyhexatin: Plictran) which is highly effective in the control of phytophagous mites. Two further organotin miticides were subsequently introduced; bis(trineophyltin)oxide (fenbutatin oxide: Vendex or Torque) by Shell and tricyclohexyltin-1,2,4-triazole (azocyclotin: Peropal) by Bayer. Thus there are currently six commercially available

Fentin acetate mp 118–120°
$$LD_{90}^{-1}$$
 (rat) 125 mg Kg $^{-1}$ LD_{90}^{-1} (rat) 125 mg Kg $^{-1}$ LD_{90}^{-1} LD_{90}^{-1} (rat) 125 mg Kg $^{-1}$ LD_{90}^{-1} LD_{90}^{-1}

Figure 1 Organotin compounds used in agriculture.

organotin compounds for agrochemical use; these are shown in Fig. 1. They are supplied by over 16 different companies under a variety of names (see for example the appendix of Reference 1).

*Oral; †Contact mp in °C.

In addition, the three triphenyltin compounds, as well as cyhexatin, have also shown antifeedant properties; 1,9,10 indeed these organotin compounds outperform many other feeding deterrents. A second new area where the triphenyltins are showing potential is as chemosterilants. Various kinds of insects, e.g. common house fly, confused flour beetle, Colorado beetle, Mediterranean fruit fly, spiny boll worm and the boll

weevil, have shown diminished or no reproduction after feeding on these derivatives. In these latter two possible uses, only very low sublethal concentrations of the compounds are required. It is of interest to note that cyhexatin has recently been found to exhibit fungitoxic activity (see Table 1.5). Acaricidal, antifeedant, chemosterilant and insecticidal properties are covered in Part 2. The main advantages of the organotin agrochemicals have been claimed to be their low phytotoxicity, their generally low toxicity to non-target organisms, and the lack of resistance by crop pests to these chemicals. However, there has been

some concern with regard to the phytotoxicity of the triphenyltin compounds to certain crops.¹ Also triphenyltin resistant strains of C. beticola from sugar beet in Italy, 12 Northern Greece 13 and Yugoslavia¹⁴ have been isolated. C. capsici and G. ampelophagum have been trained in vitro for resistance to triphenyltins, although in these cases the resistance was of a low order even after 10-14 generations. 15 Regular use of cyhexatin over a period of 7-8 years has resulted in the development of resistance by T. urticae (24.9 fold) in pear orchards of Southern Oregon¹⁶ and P. ulmi (31.4 fold) in apple and peach orchards of Bulgaria.17 Similarly T. urticae on strawberry and pear crops in the Western USA have shown high to moderate levels of resistance to cyhexatin. In Turkey resistance to this compound is reported to be developing slowly. 19 Cases of cross resistance to azocyclotin and fenbutatin oxide have also been recorded.¹⁷ In contrast, P. ulmi from apple orchards in New Zealand, where cyhexatin had been used for ≤ 9 years showed no evidence of resistance.20 Neither was resistance seen in 90 consecutive generations of T. urticae when cyhexatin was periodically applied.21 Furthermore, resistant organisms can often be successfully controlled by the use of binary compositions of the organotin compound with another active agent.

Organotins are most suitable for use in such binary formulations since they are generally compatible with other pesticides. Indeed, synergism, where the binary mixture performs better than either of its components separately, has been reported for fungicidal, acarcidal acarcidal and insecticidal compositions. Additionally, fentin acetate is active against the soil-borne fungi A. alternata and B. tetramera, which cause the degradation, and hence loss of activity, of carbendazim(I), the fungitoxic hydrolysis product of benomyl(II), and hence increases the effective lifetime of this fungicide.

II R = $NH(CH_2)_3Me$

In general, therefore, the advantages claimed above hold true. In addition, the triorganotin compounds undergo environmental degradation, i.e. the loss of the organic groups from the tin atom: 1,11

$$R_3SnX \rightarrow R_2SnX_2 \rightarrow RSnX_3 \rightarrow SnX_4$$
.

Whether this process proceeds completely to the right, with the formation of harmless inorganic tin residues, is a moot point. What is certainly true however is that the loss of a single organic group from a triorganotin species causes a significant lowering in biological activity, which in turn favours the organotins over many of their competitors.

It has been estimated that only one compound in approximately 10 000 chemical species tested will actually reach commercialisation as a plant protection agent.³⁰ In spite of such daunting odds it is pleasing to record that there has continued to be much interest in screening novel, i.e. previously untested, organotin compounds. A lot of this work has concentrated on derivatives of the established organotin pesticides, while the remainder has explored the effects of other organotins. A table covering these investigations is given at the end of each main section.

A relatively new approach to disease and pest control is the use of pesticides in combination with biological control agents. Studies involving organotins in combination with predatory mites, entomopathogenic fungi and similar organisms have been performed and are presented in Part 2 of this review.

Other related areas in which organotin compounds are showing potential, but which are not included herein, are: mosquito larvicides, 31-34 control of the snail hosts of schistosomiasis 35-38 and in the chemotherapy of leishmaniasis. 39

SECTION 1 FUNGICIDAL AND BACTERICIDAL PROPERTIES

The various fungi and bacteria mentioned in this section are presented alphabetically in Table 1.1. The fungicidal and bactericidal investigations of the commercial organotins appear in Tables 1.2–1.5 and are listed alphabetically with regard to the crop on which they were studied. The studies involving novel organotins, Table 1.6, are divided into: triphenyltin derivatives (1.6.1); anionic complexes (1.6.2); mixed organotins (1.6.3) and miscellaneous compounds (1.6.4). These are listed in order of the element directly bound to tin.

Table 1.1 Fungi and bacteria included in Section 1

Fungus/bacterium	Crop	Compounds ^a	Fungus/bacterium	Crop	Compounds
Achlya flagellata	fish	н	F. roseum	red clover	Α
A. racemosa	fish	H	F. solani	betel vine	H
Albugo tragopogonis	scorzonera	H			
Alternaria alternata	brinjal	Α	Glomeralla glycines	soybean	H
A. brassicae	in vitro	N			
A. brassicicola	in vitro	N	Hemeleia vasatrix	coffee	N
A. carthami	safflower	Н		in vitro	N
A. dauci	carrot	H	Helminthosporium graminium	in vitro	N
A. helianthicola	sunflower	A, H	H. sativum	wheat	A, C, H
A. porri	onion	Α		in vitro	N
A. sesami	sesame	A	H. spp.	rice	N
A. solani	potato	Α		in vitro	N
Aspergillus fumigatus	in vitro	N			
A. niger	in vitro	N	Klebsiella pneumoniae	in vitro	N
A. terreus	in vitro	N	•		
			Macrophoma mangifera	in vitro	Α
Bacillus mesentericus	in vitro	N	Micrococcus agilis	in vitro	N
B. pumilus	in vitro	N	Microsporum canis	in vitro	N
B. subtilis	in vitro	N	Myrothrecium roridum	bitter gourd	Α
Beauveria bassiana	silkworm	A	M. verrucaria	in vitro	N
Botrytis allii	in vitro	N			
Sov you will	m vitto	1.	Neovossia indica	wheat	A
Cacao moniliasis	cacao	A	Penicillium ilaticum	in vitro	N
Candida albicans	in vitro	N	P. notatum	in vitro	N
Cercospora arachidicola	peanut	A, X	Peronspora destructor	onion	A
C. beticola	sugar beet	H, C	Pestalotia palmarum	coconut	A
C. carrotae	carrot	H	Phoma betae	sugar beet	A
C. kikuchi	soybean	Н	P. macdonaldii	sunflower	A, H
C. wrighitia	forest nurseries	A, H	Phomopsis	sunflower	A, H
Cercosporidium personatum	peanut	A	Phythium aphanidermatum	sugar beet	A
Chaetomium globosum	in vitro	N	Phytophthora infestans	tomato	A
Choanephora	cowpea	A, H	P. palmivora	black pepper	A, H
Cladosporium allii-cepae	onion	A, H	- · punneo.u	cação	A, H
C. carophilum	in vitro	N	Plasmopara viticola	grape	N N
C. cucumerinum	in vitro	N	1 vasmopara viticizia	in vitro	N
Colletotrichum capsi	in vitro	N	Pseudomonas aeruginosa	in vitro	N
C. coffeeanum	coffee berry	N	P. fluorescens	in vitro	N
	in vitro	N	P. syringae	coffee	N
C. dematium	soybean	H	1. syringae	in vitro	N
C. falcatum	in vitro	N	Puccinia	wheat	A
C. gloeosporides	in vitro	N	P. arachidis	_	
Cryptoccus neoformans	in vitro	N	1. uruchuis	ground nut wheat	C C
			P. graminis	wheat	N
Diamonth a phagaalamus		**	1. granums	in vitro	N
Diaporthe phaseolorum	soybean	Н	P. recondita	wheat	N
			1. reconunct	in vitro	N
Ersiphe betae	sugar beet	A	Pythium	soil-borne	A, H
E. graminis	in vitro	N	Pyrenopeziza brassicae	brassicas	А, н А
E. polygoni	beans	N	Pyricularia penniseti	bajra	A H
	in vitro	N	1 унсашна ренивен	vajia	п
Escherichia coli	in vitro	N	Rhizoctonia bataticola	forest nurseries	A
			R. solani	cowpea	Α
Fusarium lycopersici	soil-borne	A, H		maize	A, H, C
F. moniliforum	in vitro	N		rice	A
F. oxysporum	red clover	A		soil-borne	Л, Н
	soil-borne	A, H		sugar beet	A, H

Table 1 (continued)

Fungus/bacterium	Crop	Compounds ^a	Fungus/bacterium	Crop	Compounds ^a
Saccharomyces cerevisiae	in vitro	N	Staphlococcus aureus	in vitro	N
Salmonella typhi	in vitro	N	Stemphylium solani	in vitro	Н
Saprolegnia hypogyna	fish	Н	Streptococcus faecalis	in vitro	N
S. megasperma	fish	Н	S. lactis	in vitro	N
Sarcina lutea	in vitro	N	Synchytrium psophocarpi	winged bean	Α
Sarocladium oryzae	rice	C, H	• • • •	-	
Sclerospora sacchari	maize	A, C	Trichophyton mentagrophytes	in vitro	N
Sclerotium rolfsii	ground nut	C	Trienophyton memagrophytes	11, 11110	- 1
	linseed	Α	77		7 . T
	ragi	Н	Uromyces phaseoli	pinto bean	N
	straw	Α		in vitro	N
Septoria appiicola	celery	Н			
Sporotrichum schenkii	in vitro	N	Xanthomonas malvacearum	in vitro	N

^aA = fentin acetate (Table 1.2): C = fentin chloride (Table 1.4); H = fentin hydroxide (Table 1.3); N = novel compounds (Table 1.6); X = cyhexatin (Table 1.5).

Table 1.2 Fungicidal and bactericidal investigations involving fentin acetate

Стор	Disease/causative organism	Comments	Reference
Bitter gourd	Leaf spot Myrothecium roridum	Gave only slight reduction in percentage of diseased leaves	41
Black pepper	Phytophthora palmivora	Showed good promise as a protectant on leaves. Was a better eradicant than other chemicals tested	42
Brassicas	Light leaf spot Pyrenopeziza brassicae	Gave good inhibition of conidial germination and mycelial growth	43
Brinjat	Leasspot and fruit rot Alternaria alternata	Was amongst those compounds which proved most effective in inhibiting growth	44
Cacao	Cacao moniliasis	In field tests incidence was reduced from 93% to 51%	45
Cacao	Phytophthora palmivora	At 2000, 1000 and 500 $\mu g g^{-1}$ gave 100, 97 and 93% inhibition of growth respectively	46
Coconut	Gray blight Pestalotia palmarum	Activity was shown, but other fungicides performed better	47
Cowpea	Web blight Rhizoctonia solani Early season disease	On its own or in combination with Gammalin 20 markedly reduced severity of the disease Gave reduction of incidence	48
Cowpea	Pod rot Choanephora	Inhibited mycelial growth	49
Forest nursery seedlings of Wrighitia tinctoria	Cercospora wrighitia	Was effective to some extent	50
Forest nursery	Soil-borne pathogen Rhizoctonia bataticola	Minimised growth at all concentrations tested	51
Linseed	Foot rot Sclerotium rolfsii	Was not effective	52
Maize	Sugar-cane downy mildew Sclerospora saccari	Seed treatment at 5 g Kg ⁻¹ gave good protection	53
Maize	Banded sclerotial disease Rhizoctonia solani	Gave complete inhibition	54
Oníon	Downy mildew Peronospora destructor Purple blotch Alternaria porri	Gave some control of both diseases	55

Table 1.2 (continued)

Crop	Disease/causative organism	Comments	Reference
Onion	Leaf blotch Cladosporium allii-cepae	In combination with Maneb was most effective in inhibiting spore germination, growth and reproduction of the fungus	56
Peanut	Early and late spot Cercospora arachidicola Cercosporium personatum	In the field was amongst the compounds which gave best control	57
Potato	Early blight Alternaria solani	Plots treated with 1 Kg ha ⁻¹ had minimum infection	58
Red clover	Fusarium wilt Fusarium oxysporum F. roseum	Was the most effective of eight fungicides in inhibiting mycelial growth in vitro	59
Rice	Sheath blight disease Rhizoctonia solani	Infected seeds were treated with 0.1, 0.2 and 0.3%. Slight inhibition of seed germination occurred, but increase in seedling growth and vigour was observed. Viability of the seedlings was maintained for ≤ 8 months	60 60
Rice	Sheath blight <i>Rhizoctonia solani</i> Rice blast	Inhibited the saprophytic activity in soil, but other compounds were superior At $1.86 \mu\mathrm{g}\mathrm{cm}^{-3}$ was most effective in inhibiting spore germination	61 62
Sesame	Alternaria blight Alternaria sesami	Under field conditions 250 μ g g ⁻¹ inhibited spore germination 100%	63
Silk worm	Muscardine disease Beauveria bassiana	Was most effective compound tested Inhibited fungal growth at 0.0025%	64
Straw	Sclerotium rolfsii	Soil mixing with 100 µg g ⁻¹ killed fungus on straw. Was moderately effective in top 2 inches of soil when applied as a drench	65
Sunflower	Leaf spot Alternaria helianthicola	At 0.1% concentration gave ca 77% inhibition of growth and spore germination	66
Sunflower	Alternaria helianthicola Phoma macdonaldi Phomopsis	At $100 \mu\mathrm{g}\mathrm{g}^{-1}$ was fungitoxic to all three	67
Sugar beet	Damping-off discase Rhizoctonia solani Phythium aphanidermatum Phoma betae	Showed good activity particularly against <i>P. aphanidermatum</i> and was effective against <i>P. betae</i>	68
Sugar beet	Powdery mildew Erysiphe betae	In combination with wettable sulphut completely controlled infection	69
Tomato	Late blight Phytophthora infestans	Gave promising results in this preliminary study	70
Wheat	Karnal bunt Neovossia indica	As a seed dressing was amongst the compounds with highest activity	71
Wheat	Leaf rust Puccinia	Combined with maneb gave effective control of leaf rust but not stem rust	72
Wheat	Spot blotch Helminthosporium sativum	At 0.05–0.2% produced a reduction in intensity of disease	73
Winged bean	False rust Synchytrium psophocarpi	In field trial produced significant reduction of infection	74
_	Soil-borne fungi Rhizoctonia solani Fusarium oxysporum F. lycopersici Pythium	Effective against all 4 in the laboratory	75
_	Macrophoma mangifera	In vitro was highly effective in inhibiting mycelial growth and stromatal production	76

Table 1.3 Fungicidal and bactericidal investigations involving fentin hydroxide

Crop	Disease/causative organism	Comments	Reference
Bajra	Leaf spot Pyricularia penniseti	Showed high toxicity to mycelial growth and spore germination	177
Betel vine	Betel vine decline Fusarium solani	Second most active compound of 11 on test	78
Black pepper	Phytophthora palmivora	Showed good promise as a protectant on leaves	42
Carrot	Foliar diseases Alternaria dauci Cercosporia carrotae	At 0.4% gave control	79
Celery	Septoria apiicola	When formulated with propineb gave best control on test	80
Cocoa	Phytophthora palmivora	At 500 μ g g ⁻¹ completely inhibited growth of the fungus	46
Cowpea	Basal stem rots	In vitro at 200 µg g ⁻¹ inhibited growth of all pathogens associated with basal stem rots. Gave effective control in field trials	81
Cowpea	Pod rot Choanephora	Inhibited mycelial growth	49
Fish	Aquatic fungi pathogenic to fish Achlya flagellata A. racemosa Saprolegnia hypogyna S. megasperma	At $< 100 \mathrm{mg} \mathrm{dm}^{-3}$ inhibited fungal growth on artificial media	82
Forest nursery seedlings of Wrighitia tinctoria	Cercospora wrighitia	Was effective to some extent	50
Maize	Banded sclerotial disease Rhizoctonia solani	A foliar spray of thiabendazole(III) (0.005%), followed by vitavax(IV) (0.1%) and duter (0.05%) was most effective in reducing disease and resulted in increased yields	54
Onion	Leaf blotch Cladosporium allii-cepae	Was most effective in inhibiting spore germination, growth and reproduction of the fungus	56
Ragi	Foot rot Sclerotium rolfsii	Incidence of infection was markedly reduced when 25 g/ha was incorporated into the soil before sowing	83
Rice	Sheath rot Sarocladium oryzae	Controlled disease but brestanol (Ph ₃ SnCl) was more effective	84
Safflower	Leaf blight Alternaria carthami	At 0.05% gave control	85
Scorzonera	White rust Albugo tragopogonis	When mixed with tridemorph(V) 4 treatments at 14-day intervals gave most effective control	86
Sesame	Mycoflora of seeds	Gave a broad spectrum effect of eradicating mycoflora	87
Soybean	Pod and stem blight Diaporthe phaseolorum Anthracnose Collectotrichum dematium Glomeralla glycines Leaf blight Cercospora kikuchii	Was amongst compounds which gave best disease control and highest yield increases	88
Soybean	Foliar fungi	Did not show much activity	89
Sugar beet	Leaf spot Cercospora beticola	At 0.33 kg ha ⁻¹ decreased the severity of the disease	90
Sugar beet	Crown rot Rhizoctonia solani	Was most effective at controlling the infection	91

Table 1.3 (continued)

Crop	Disease/causative organism	Comments	Reference
Sunflower	Leaf spot Alternaria helianthicola	0.2% concentration gave ca 87% inhibition of growth and spore germination	: 66
Sunflower	Alternaria helianthicola Phoma macdonaldii Phompsis	At $100 \mu\mathrm{g}\mathrm{g}^{-1}$ was fungitoxic to all 3	67
Wheat	Spot blotch Helminthosporium sativum	Reduction in intensity of disease was achieved using 0.05–0.2% treatments	73
_	Soil-borne fungi Rhizoctonia solani Fusarium oxysporum F. Lycopersici Pythium	Was effective against all four fungi in the laboratory	75
_	Stemphylium solani	Moderately active in vitro against mycelial growth	92

Table 1.4 Fungicidal and bactericidal investigations involving fentin chloride

Crop	Disease/causative organism	Comments	Reference
Ground nut	Wilt Sclerotium rolfsii	As a seed soak or soil drench offered some control, but other compounds were better	93
Ground nut	Rust Puccinia arachidis	Spore germination was totally inhibited even at half-normal dose i.e. 0.05%	94
Maize	Sugar-cane downy mildew Sclerospora sacchari	Seed treatment at 5 g K g ⁻¹ gave good protection	53
Maize	Banded sclerotial disease Rhizoctonia solani	Gave complete inhibition of the pathogen	54
Rice	Sheath rot Sarocladium oryzae	Three sprays at 0.1% gave good control of the disease and increased yields	84
Sugar beet	Leaf spot Cercospora beticola	Was effective when applied at 750 g ha ⁻¹ in 2-4 spray treatments. Root yield was also increased	95
Wheat	Leaf rust Puccinia arachidis	At half-normal recommended dose in vitro gave 100% inhibition of spore germination	96
Wheat	Spot blotch Helminthosporium sativum	Treatments of 0.05-0.2% reduced the intensity of the infection	73

Table 1.5 Fungicidal and bactericidal investigations involving cyhexatin

Crop	Disease/causative organism	Comments	Reference
Apple	Brown rot	Application of 1.8 g per tree in spray volumes ranging from 0.225–9.0 dm³ per tree gave complete control	97
Peach	Black spot (apple scab) Powdery mildew		97
Peanuts	Early leaf spot Cercospora arachidicola	Complete inhibition in vitro at $\geq 73.5 \mu\text{g cm}^{-3}$	98

Table 1.6 Fungicidal and bactericidal investigations involving non-commercialized organotin compounds 1.6.1 Triphenyltin derivatives, Ph₃SnX

X=	Comments	References
$-(CH_2)_n Y$ $Y = \text{halogen}, NR_2 \text{ etc.}$ (Other $R_3 Sn$ included)	Fungi: B. allii, P. ilaticum, A. niger, C. Cucumerinum Bacteria: B. subtilis, S. lactis, E. coli, P. fluoroscens Good activity was claimed	99
$ \begin{array}{ccc} & & & & & & \\ & & & & \\ & & & & \\ & & & &$	Stannylimides show fungicidal activity	100, 101, 102
-OCO. C ₆ H ₄ . SCN-4 (and analogues)	Exhibited greater fungicidal activity than fentin acetate against Xanthomonas malvacearum	103
—OCO . CH(Me)(C ₆ H ₃ Me ₂ -2,3)NOCCH ₂ OMe acrylated aminocarboxylates	At 0.006% inhibited infestation of wheat by Puccinia graminis by 95–100%	104
—OCH₂CH₂OBu	Gave 80-90% inhibition of A. niger, H. sativum and A. terreus at 0.1% concentration and at $10 \mathrm{mg}\mathrm{cm}^3$ inhibited the growth of B. subtilis, B. pumilus and S. lutea	105
—OH in physical combination with benzanilides:	Fungicidal activity was claimed	106
Z-CONH-OCHMe2		
−SC(SMe)NNC(H) N	Fungi: A. terreus, F. moniliform, Helminthosporium spp. and C. falcatum	. 107
and other Schiff base complexes	Bacteria: S. aureus, B. subtilis and B. pumilus. At 0.1% gave 100% inhibition of fungal growth. Showed high toxicity to bacteria except B. pumilus	
-S CH ₂ CH ₂	After 1 week gave 80–90% inhibition of <i>Helminthosporium</i> spp, <i>A. terreus</i> and <i>A. niger</i> . Bactericidal activity was comparable to sulphaguanidine, but less than that of tetracycline	108, 109
-1,3-diphenylpropane-1,3-dione complex -quinolin-8-ol complex -quinolin-8-thiol complex	At $100 \mathrm{mg} \mathrm{dm}^{-3}$ all 3 had activity similar to fentin acetate against <i>P. viticola</i>	110
$\begin{array}{c} Ph_{3}SnCl & \\ \hline \\ = N \\ \end{array} \begin{array}{c} Ph \\ \hline \\ N-N \\ \end{array} \begin{array}{c} Adduct \\ \end{array}$ adduct $\begin{array}{c} Ph \\ \hline \\ N-N \\ \end{array} \begin{array}{c} Adduct \\ \end{array}$	Showed excellent levels of control against coffee berry disease (C. coffeeanum), coffee leaf rust (H. vasatrix) and coffee bacterial blight (P. syringae)	111
Ph ₃ SnNCSe[DMA] adduct	Inhibits growth at a minimum inhibitory concentration of $3.125 \mu\text{g/cm}^3$ of bacteria; <i>S. faecalis</i> and <i>E. coli</i> ; and fungi <i>C. albicans, C. neoformans, S. schenckii, T. mentagrophytes</i> and <i>A. fumigatus</i>	112

Table 1.6	(continued)	ì
Laute 1.0		7

X =	Comments	References
Ph ₃ SnN ₃ [L] adduct	Parent compound and its complexes were effective in inhibiting growth of S. faecalis, S. aureus, K. pneumoniae and E. coli, but not P. aeruginosa. Similarly, they were active against the fungi: C. albicans, S. schenkii and T. mentagrophytes; but were inactive against C. neoforms and A. fumigatus. L=benzimidazole tended to give highest activity	113

1.6.2 Anionic complexes

X =	Comments	Reference
Phosphonium organohalogenostannates(IV) e.g. [Bu ₃ PC ₁₈ H ₃₇] ⁺ [Cy ₃ SnCl ₂] ⁻ (A)	Fungicidal, bactericidal and algicidal properties are claimed. 0.02% A on barley showed $<20\%$ infection by <i>E. graminis</i> (controls 100%)	114
Triethyl ammonium chloride complexes of triphenylstannyl isoureas e.g. [Et ₃ NH] ⁺ [RNHCO(NCN)SnPh ₃ Cl] ⁻	Fungi: A. niger, C. globosum, C. carpophilum, F. monoliforme, M. verrucaria, P. notatum, S. cerevisiae and T. mentagrophytes	
	Bacteria: M. agilis, B. subtilis and S. aureus showed higher activity than uncomplexed triphenyl stannyl isoureas	
Ammonium organohalogenostannates(IV) $[R_4N^+]_2[(\overline{CH}_2)_nSnX_2X_2']^{2-}$ $n=4,5; X,X'=halogen,NCS$	Exhibit higher activity than either parents towards gram- positive bacteria	116

1.6.3 Mixed organotins

X=	Comments	Reference
$R_n R_{(3-n)} SnX$ e.g. $BuMe_2 SnCl(B)$	B controlled <i>E. polygoni</i> on beans at $100 \mu \mathrm{g}\mathrm{g}^{-1}$, <i>U. phaseoli</i> on pinto beans at $200 \mu \mathrm{g}\mathrm{g}^{-1}$, and <i>Helminthosporium</i> on rice at $200 \mu \mathrm{g}\mathrm{g}^{-1}$	117
Me(C ₆ H ₃ Cl ₂ -3,4) ₂ SnOAc (and analogues)	At 19 μ g g ⁻¹ gave 93% control of downy mildew (<i>P. viticola</i>) on grape seedlings	118

1.6.4 Miscellaneous compounds

X =	Comments	Reference
Cy_3SnX X = halogen, pseudohalogen	Fungi: C. albicans, C. neoformans, M. canis, A. niger, A. fumigatus and T. mentagrophites	119
	Bacteria: S. aureus, S. faecalis, K. pneumoniae, S. typhi and E. coli	
	Excellent activity was shown towards gram-positive bacteria, but gram-negative bacteria (latter two) are resistant. Was most active against the fungus <i>C. neoformans</i>	

Tabla	16	(continue	A١
Labie	1.0	icontinue	വ

X =	Comments	Reference
Tricyclopentyltin hydroxide [] 3 SnOH	Behaved as a simultaneous fungicide and miticide. Controlled downy mildew (<i>P. viticola</i>) on grape and 2-spotted spider mite (<i>T. urticae</i>) on bean	
$\begin{bmatrix} \bigcirc \\ \end{bmatrix}_3 \text{SnOH}$ $\text{Et}_3 \text{SnO} - \begin{pmatrix} \bigcirc \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Was sprayed on wheat plants which were then innoculated with rust (<i>P. recondita</i>). After 14 days no treated plants were infected whereas all controls were	121
Bu ₂ Sn(OCH ₂ CH ₂) ₂ NH (and others)	At 0.5% was extremely active against B. subtilis, B. mesentericus and C. globosum in vitro	122
$Ph_2SnCl_2\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Showed excellent levels of control against coffee berry disease (C. coffeeanum), coffee leaf rust (H. vasatrix) and coffee bacterial blight (P. syringae)	111
Tin(IV) derivative of 2-hydroxy-1-naphthalene carbaldehyde semicarbazone	Showed complete inhibition of spore germination at $500 \mu\mathrm{gg^{-1}}$ of <i>C. capsi, A. brassicicola</i> and <i>H. graminium</i> , and at $250 \mu\mathrm{gg^{-1}}$ of <i>C. gloeosporides</i> and <i>A. brassicae</i>	123
HC N-N=C-NH ₂		
HC N-N=C-NH ₂		

SECTION 2 HERBICIDAL PROPERTIES

This appears to be a little explored area. During the period 1958–1974 it was variously discovered that triphenyl compounds, in particular the acetate, were suitable for the control of algae in rice fields or in water cultures of celery.⁴⁰ It was found that triphenyltin acetate present in the water at a level of $0.7 \,\mu \mathrm{g}\,\mathrm{g}^{-1}$ caused all algae to die within 48 hours and that this effect lasted for

about 7–10 days. In addition no phytotoxic effects to the young rice plants were seen, nor were fish living in the rice fields harmed. The extent to which triphenyltins are used in this application are not known, but it is likely to be small, if they are used at all.

During the 1980's two studies, involving novel organotin compounds have been reported, these are summarised in Table 2.1.

Table 2.1 Novel organotin herbicides

X =	Comments	Reference
Sn Me ₃	Controlled Echinochla cru-galli, Digitaria sanguinalis, Amaranthus blitum, Abutilon theophasti and Cyperus rotundus in corn and soybean at 80 g/acre	
C(CN)=NOSnPh ₃	Was a herbicide safening agent. Thus rice seeds were soaked in $100 \mu\mathrm{g}\mathrm{g}^{-1}$ for 24 hours and drip dried. Treated seed was sown in moist soil and a herbicide was applied. No phytotoxic effects were observed on treated group, whereas controls showed severe symptoms in 7 days	125

Acknowledgement The International Tin Research Council, London are thanked for permission to publish this paper.

REFERENCES

- I Blunden, S J, Cusack, P A and Hill, R The Industrial Uses of Tin Chemicals, Royal Society of Chemistry, London, 1985
- 2. Bennett, RF Ind. Chem. Bull., 1983, 2: 171
- van der Kerk, GJM and Luijten, JGA J. Appl. Chem., 1954, 4: 314
- van der Kerk, GJM and Luijten, JGA J. Appl. Chem., 1956, 6: 56
- Noltes, JG, Luijten, JGA and van der Kerk, GJM J. Appl. Chem., 1961, 11: 38
- Luijten, JGA and van der Kerk, GJM J. Appl. Chem., 1961, 11: 35
- van der Kerk, GJM, Luijten, JGA, van Egmond, JC and Noltes, JG Chimia, 1962, 16: 36
- 8. Sugavanam, B Tin and its Uses, 1980, 126: 4
- 9. Haynes, S Tin and its Uses, 1981, 127: 12
- 10. Ascher, KRS World Rev. Pest Control, 1970, 9: 140
- 11. Smith, PJ Metallurgie, 1982, 3: 161
- 12. Cerato, C and Grassi, G Inf. Fitopatol., 1983, 33: 67
- Chrysayi-Tokousbalides, M and Giannopolitis, CN Plant Dis., 1981, 65: 267
- Maric, A, Maserevic, S and Jerkovic, Z Zast Bilja, 1984, 35: 207
- Reddy, MS, Ramapandu, S and Rao, AA Proc. Indian Acad. Sci. (Ser.) Plant Sci., 1981, 90: 535
- Hoyt, SC, Westigard, PH and Croft, BA J. Econ. Entomol., 1985, 78: 656
- 17. Balevski, A Gradinar. Lozar Nauka, 1983, 20: 29
- Croft, BA, Miller, RW, Nelson, RD and Westigard, PH J. Econ. Entomol., 1984, 77: 574
- Oncag, G, Yalcin, E, Dincer, J and San, S Doga. Seri. D., 1983, 7: 107
- Chapman, R B and Penman, D R N.Z. J. Agric. Res., 1982, 25: 119
- Zil'bermints, IV and Zhuravleva, LM Khim. Sel'sk. Khoz., 1983, 3: 31
- Lyr, H, Kluge, E, Zanke, D, Klepel, M and Lehmann, H GDR P. 155,481/1982
- 23. Sachse, B and Koch, M FRG P. 3,222,010/1983
- 24. Formigoni, A Fr. P. 2,443,203/1980
- 25. Regivoli, GC and Vincenzo, LA Eur. P. 91,616/1983
- Knowles, CO and El-Sayed, GN J. Econ. Entomol., 1985, 78: 308
- 27. Damotte, P and Colliot, F Fr. P. 2,507,861/1982
- Moustafa, O K, El Attal, Z M and Abdallah, M D J. Agric. Sci., 1980, 95: 523
- Yarden, O, Katon, J, Aharonson, N and Ben-Yephet, Y Phytopathology, 1985, 75: 763
- 30. Huber, G Tin and its Uses, 1977, 113: 7
- Kumar Das, VG, Kuan, LY, Sudderuddin, KI, Chang, CK, Thomas, V, Yap, CK, Lo, MK, Ong, GC, Ng, WK and Hoi-sen, Y Toxicology, 1984, 32: 57

- 32. Sherman, L R J. Appl. Polym. Sci., 1983, 28: 2823
- Priester, T M and Geaghiou, G P Pestic Sci., 1980, 11:
- Sherman, LR and Jackson, JC Controlled Release of Pesticides and Pharmaceuticals, Lewis, DH (ed.), Plenum, New York, 1981
- 35. Cardarelli, NF Tin and its Uses, 1972, 93: 16
- Hagen, SD, Kanakkanatt, SV and Cardarelli, NF Proc. Int. Conf. Shisto, 1978, 459
- Cardarelli, NF Controlled Release Molluscides, Univ. Akron Monogr., 1977
- Cardarelli, NF, Evans, W and Smith, D Int. Symp. Contr. Rel. Biol. Act. Agents, Florida, 1980
- Peters, W, Trotter, ER and Robinson, BL Annals Tropical Med. Parasit, 1980, 74: 321
- Bock, R Residue Reviews, Gunther, FA (ed.), Springer-Verlag, New York, 1981, Vol. 79
- Parakhia, A.M., Vaishanav, M.U. and Pandya, N.N. Indian J. Plant Prot., 1980, 8: 62
- 42. Kueh, TK and Khew, KL Malays. Agric. J., 1980, 52: 263
- Cheah, LH, Corbin, JB and Hartill, WFT N.Z. J. Agric. Res., 1981, 24: 391
- 44. Singh, M and Shukla, T N Pesticides, 1985, 19: 72
- 45. Murillo, D and Gonzalez, LC Agron. Costarric., 1984, 8: 83
- 46. Reddi, MK and Mohan, RC Pesticides, 1984, 18: 51
- 47. Das, CM and Mahanta, IC Pesticides, 1985, 19: 37
- 48. Oladiran, AO Trop. Grain Legume Bull., 1980, 13
- 49. Oladiran, AO Trop. Pest Manage, 1980, 26: 396
- Kulkarni, S, Siddaramaiah, AL and Basavarajaiah, AB Pesticides, 1984, 18: 35
- Siddaramaiah, A.L., Kulkarni, S. and Basavarajaiah, A.B. Pesticides. 1980, 14: 25
- 52. Siddaramaiah, AL and Desai, SA Curr. Res. (Univ. Agric. Sci., Bangalore), 1980, 9: 175
- Lal, S, Nath, K and Saxena, SC Trop. Pest Manage., 1980, 26:286
- 54. Lal, S, Butchaiah, K and Baruah, P Pesticides, 1985, 19:
- Ramos, R S, Issa, E, Sinigaglia, C and Chiba, S Biologico, 1984, 50: 97
- 56. Hall, K and Kavanagh, J A Plant Pathol., 1984, 33: 147
- Mariolto, P.R., Texeira, L.G. and Simoes, F.E.B. Biologico, 1984, 50: 205
- De, BK and Chattopadhyay, SB Pesticides, 1984, 18:
- Pall, O, Panfil, C and Savatti, M Bull. Inst. Agron. Cluj-Napoca Ser. Agric., 1980, 34: 75
- Kannaiyan, S and Prassad, N N Madras Agric. J., 1982,
 585
- Kannaiyan, S and Prassad, NN Natl Acad. Sci. Lett. (India), 1980, 3: 172
- Kapoor, AS and Singh, BM Indian Phytopathol., 1982, 35: 558
- 63. Rajpurohit, TS, Prassad, N and Gemawat, PD Pesticides, 1984, 18: 57
- Siddaramaiah, A.L., Lingaraju, S.L. and Prasad, K.S.K. Ind. J. Seric., 1979, 18: 6

- Anilkumar, TB and Gowda, KTP Pesticides, 1984, 18:
 43, 46
- 66. Rao, GN and Rajagopalan, K Pesticides, 1982, 16: 18
- Maric, A, Fayzalla, S and Masirevic, S Zast Bilja, 1982, 33: 281
- Dewaan, MM, El-Hassan, SA and El-Bahaldi, AH Mesopotamia J. Agric., 1981, 16: 169
- Ahrens, W and Coenen, H Meded. Fac. Landbrouwwet., Rijksuniv. Gent, 1984, 49: 267
- Bujulu, J, Gwandu, AB and Mero, HN East. Afr. Forest J., 1978 (Pub. 1981), 44: 146
- 71. Rai, RC and Singh, A Seed Res., 1979, 7: 186
- Campacci, CA, Oliveira, DA, Justo, MV and Silverio, JCO Biologico, 1980, 46: 11
- Singh, A and Virk, S.K. Ind. J. Mycol. Plant Pathol., 1980, 10: 115
- Drinkall, MJ and Price, TV Trop. Agric. (Guildford, U.K.), 1984, 61: 293
- Al-Hassan, KE and Asker, NN Iraqi J. Sci., 1982, 23: 431
- 76. Ekundayo, CA Microbios. Lett., 1984, 25: 13
- Yadav, RKS, Agnihotri, JP and Prasada, R Indian Phytopathol., 1980, 33: 16
- Hiremath, PC, Sulladmath, VV and Ponnappa, KM Pesticides, 1981, 15: 11
- Lobo, MA, Navarro, RA and Lopez, AL Rev. Inst. Columb. Agropecu., 1983, 18: 19
- Vulsteke, G and Meeus, P Meded. Fac. Landbrouwwet., Rijksuniv. Gent, 1981, 46: 911
- Oladiran, A O and Okasuaya, B O Trop. Pest. Manage., 1980, 26: 403
- 82. Bailey, T A Aquaculture, 1984, 38: 97
- 83. Channamma, KAL, Hiremath, PC and Viswanath, S Curr. Res. (Univ. Agric. Sci., Bangalore), 1980, 9: 142
- 84. Raju, CA and Singh, RA Pesticides, 1981, 15: 26
- 85. Quadri, SMH and Deshpande, KS Pesticides, 1985, 19:
- 86. Vulsteke, G and Meeus, P Meded. Fac. Landbrouwwet. Rijksuniv., Gent, 1981, 46: 1003
- Ramaiah, KS and Sastry, MNL Mysore J. Agric. Sci., 1983, 17: 141
- 88. Walters, HJ Rep. Ser. Arkansas, Agric. Exp. Stn, 1980, 250: 31 pp
- 89. Phillips, DV Plant Dis., 1984, 68: 558
- Potter, HS and Schneider, CL J. Amer. Soc. Sugar Beet Technol., 1981, 21: 50
- Schneider, CL and Potter, HS J. Amer. Soc. Sugar Beet Technol., 1983, 22: 54
- Rolim, PRR and Oliveira, DA Arg. Inst. Biol. Sao Paulo, 1982, 49: 37
- Dhamnikar, SV and Peshney, NL Pesticides, 1982, 16:

- Peshney, N L, Khune, N N and Moghe, P G Trop. Grain Legume Bull., 1980, 20: 27
- Naidu, PH and Mukhopadhyay, AN Pesticides, 1982, 16: 20
- Peshney, NL, Khune, NN and Moghe, PG Pesticides, 1980. 14: 21
- 97. Whan, JH and Smith, IR Pestic. Sci., 1983, 14: 609
- 98. Melouk, HA Peanut Sci., 1981, 8: 11
- 99. Bulten, E J GB. P. 1,598,451/1981
- 100. Schcherbakov, VI, Anisimov, AA, Stolyarova, NE, Fel'dman, MS and Smirnov, VF Izv. Vyssh. Uchebn. Zaved. Khim. Teknol., 1982, 25: 690
- 101. Wehner, W and Ackerman, P Eur. P. 77,299/1983
- 102. Wehner, W and Ackerman, P Eur. P. 77,300/1983
- 103. Xu, H, Zhuo, R, Mo, Y and Liu, H Huaxue Xuebao, 1981, 39: 804
- 104. Hubele, A and Riebli, P Eur. P. 101,404/1984
- Sengupta, A.K. and Gupta, A.A. Bokin Bobai, 1982, 10: 383
- 106. Nihon Nohyaku Co Ltd, Jap. P. 81,167,606/1981
- Srivastava, TN, Sengupta, AK and Jain, SP J. Antibact. Antifung. Agents, 1981, 9: 285
- 108. Gupta, AKS and Gupta, AA Bokin Bobai, 1981, 9: 181
- Sengupta, A K and Anurag, A Ind. J. Chem. Sect. B, 1983, 22B: 263
- Blunden, SJ, Smith, PJ and Sugavanam, B Pestic. Sci., 1984, 15: 253
- Smith, F E, Okioga, D and Khoo, L E Int. Pest Contr., 1980, 22: 61, 64
- 112. Srivastava, TN, Srivastava, PC, Srivastava, SK and Srivastava, O P Bokin Bobai, 1981, 9: 439
- 113. Srivastava, TN, Srivastava, PC, Srivastava, SK, Srivastava, OP and Chaudra, B Bokin Bobai, 1982, 10: 429
- 114. Wehner, W and Grade, R Eur. P. 105,843/1984
- Kupchik, E J, Pisano, M A, Parikh, D K, Krejci, C and Taylor, J J. Pharm. Sci., 1984, 73: 1012
- Srivastava, TN, Sengupta, AK and Jain, SP Ind. J. Chem. Sect. A, 1982, 21A: 384
- 117. M. and T. Chemicals Inc., Jap. P. 57,154,111/1982
- 118. Ehr, RJ U.S. P. 4,427,695/1984
- Awasthi, VK, Bhattacharya, SN and Verma, M J. Ind. Chem. Soc., 1982, 59: 264
- Sbragia, R J, Hardy, J L, Engelhart, J E, Gitlitz, M H and Ehr, R J U.S. P. 4,224,338/1980
- Ulm, K, Hartz, P, Sachse, B and Wagner, K FRG. P. 3,341,668/1985
- 122. Plum, H, Buschoff, M and Cejka, A Swiss P. 620,573/1980
- 123. Saxena, A, Koacher, JK and Tandon, JP Bokin Bobai, 1981, 9: 435
- 124. Sumitomo Chemical Co. Ltd., Jap. P. 82,72,905/1982
- 125. Ciba-Geigy Jap. P. 80,35,091/1980