Organotin biocides. XII.* Synthesis and structural characterization of organotin derivatives of 3-indolylacetic acid, including the crystal structures of tributylstannyl 3-indolylacetate and tricyclohexylstannyl N-methyl-3-indolylacetate

KC Molloy,† TG Purcell, MF Mahon and E Minshall School of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

Received 24 August 1987

Accepted 15 September 1987

Keywords: Organotin biocides, structure, X-ray, indolylacetic acid, plant-growth hormone

INTRODUCTION

3-Indoyl acetic acid (I; R = H; IAAH) is a plant growth hormone, important for cell enlargement in shoots and lateral root initiation. It is believed to act by stimulating polysaccharide synthesis which leads to loosening of the cell membrane and facilitating cell enlargement.2 Our interest in the biocidal nature of organotin compounds has prompted us to prepare compounds which incorporate both active metal and ligand entities and we report our findings herein relating to a series of derivatives of IAAH. In a previous publication, we have described the structure of Cy_3SnIAA ($Cy = cyclo-C_6H_{11}$) which, in the solid state, consists of tetrahedral organotin units held in a one-dimensional H-bonded chain intermolecular N-H...O=C interactions.³ In view of the important role of hydrogen bonding in this system, we have prepared for comparison derivatives of N-methyl-3-indolylacetic acid (I; R=CH₃; N-MeIAAH) in which such a structural feature is precluded.

In addition to a full report on both the synthesis and structural chemistry of the titled organometallic carboxylates, we also include in this contribution details of screening tests undertaken to assess the potential pesticidal and fungicidal activity of representative compounds.

EXPERIMENTAL

Spectra were recorded using the following (infrared). instruments: Perkin-Elmer 599B Perkin-Elmer R24B (1H nmr), JEOL FX60Q (119Sn NMR), V.G. 70-70E (mass spectra). Details of our Mössbauer spectrometer and related procedures are given elsewhere.4 3-Indolvlacetic acid was of commercial origin (Aldrich) and was used without further purification. The N-methyl analogue prepared by the method of Rosemund et al.5 The synthesis of organotin esters of these acids follows two routes, typified by the examples given below. Additional experimental details including recrystallization solvents. vields. analytical and physical data are collected in Table 1.

Synthesis of tricyclohexylstannyl-3indolylacetate (Method 1)

Cy₃SnOH (3.0 g, 7.8 mmol) and IAAH (1.39 g, 7.9 mmol) were refluxed together in toluene (100 cm³) for 45 min, during which time the water formed as a result of the reaction was azeotropically removed using a Dean and Stark trap. The solution was allowed to cool to ca

^{*}For Part XI see ref. 1.

[†]Author to whom correspondence should be addressed.

Table 1	Physical	dataa
---------	----------	-------

Compound	Preparation method ^b	Yield M.P (%) (°C)		Calculated (%)			Found (%)		
				C	Н	N	c	Н	N
Me ₃ Sn(IAA)	2	26°	166–168	46.20	5.07	4.14	45.87	4.90	3.95
Bu ₃ Sn(IAA)	1	93 ^d	58-60	56.92	7.59	3.02	55.80	7.32	2.94
Cy ₃ Sn(IAA)	1	55°	150-152	62.01	7.62	2.58	61.82	7.59	2.50
Me ₃ Sn(N-MeIAA)	1	73°	150-152	47.77	5.44	3.98	47.09	5.30	3.89
Bu ₃ Sn(N-MeIAA)	1	91 ^d	75–76	57.76	7.80	2.92	57.84	7.95	3.23
Cy ₃ Sn(N-MeIAA)	1	50 ^f	89-90	62.60	7.81	2.52	61.80	7.71	2.50
Me ₃ Pb(IAA)	2	30°	180(d)	36.61	4.02	3.28	36.26	3.93	3.14

^aAbbreviations: Bu=n-C₄H₉; Cy=cyclo-C₆H₁₁. ^bSee Experimental for code. ^eRecrystallized from EtOH. ^dRecrystallized from 40:60 petroleum ether. ^eRecrystallized from toluene. ^fRecrystallized from MeOH.

55°C, filtered and the filtrate concentrated to approximately half its volume. Overnight crystallization yielded the desired product, which was subsequently recrystallized from hot toluene (2.42 g, 55%).

Synthesis of trimethylstannyl-3indolylacetate (Method 2)

IAAH (1.0 g, 5.8 mmol) was dissolved in a methanolic solution (20 cm³) containing sodium (0.13 g, 6.2 mmol). To this was added Me₃SnCl (1.13 g, 5.7 mmol) in methanol (10 cm³). The resulting mixture was stirred, first at room temperature for 1 h, then at reflux for 2 h before being evaporated to dryness and the residue recrystallized from hot toluene. The product obtained in this manner was further recrystallized from ethanol to yield the desired compound as a colourless, crystalline material (0.5 g, 26%).

X-ray crystal structure of Bu₃Sn(IAA)

Suitable crystals for X-ray studies were grown from 40:60 petroleum ether.

Crystal data: $C_{22}H_{35}NO_2Sn$, mol.wt = 464.3, monoclinic $P2_1/n$, a=13.388(6), b=10.278(4), c=17.350(6) Å, $\beta=98.6(3)^\circ$, V=2360.84 Å³, Z=4, $D_c=1.31$ g cm⁻³, F(000)=928, $\mu(Mo-K\alpha)=9.94$ cm⁻¹.

Data collection was carried out at room temperature on a Hilger-Watts Y290 four-circle automatic diffractometer using $Mo-K\alpha$ radiation. Of the 3787 reflections measured, 3358 had $I \ge 3\sigma(I)$ and were considered to be observed. Data were corrected for Lorentz and polarization

effects, but not for absorption. The structure was solved by conventional methods using the SHELX⁶ program suite to final values of R = 0.0362 and $R_{\rm W} = 0.0405$. The asymmetric unit with atomic labelling is shown in Fig. 1. Final positional parameters for non-hydrogen atoms and bond distances and angles are given in Tables 5 and 6 respectively.

X-ray crystal structure of Cv₂Sn(N-MeIAA)

Suitable crystals for X-ray analysis were grown from toluene.

Crystal data: $C_{29}H_{43}NO_2Sn$, mol. wt = 556.4, monoclinic $P2_1/n$, a=9.888(4), b=15.288(8), c=18.326(7) Å, $\beta=91.8(2)^\circ$, V=2768.89 Å³, Z=4, $D_c=1.33$ g cm⁻³, F(000)=1160, $\mu(Mo-K\alpha)=8.57$ cm⁻¹.

In a manner similar to that described above, the structure was solved using diffraction data for 3024 observed reflections from a total data set of 3995, to final values of R = 0.0651 and $R_{\rm w} = 0.0680$. Final fractional atomic coordinates, bond distances and angles for non-hydrogen atoms are given in Tables 8 and 9. The asymmetric unit is shown in Fig. 4. For both structures, full listings of atomic coordinates and thermal parameters are available upon request from the authors.

Biocidal testing

Me₃Sn(IAA) and Cy₃Sn(IAA) were tested against selected organisms by ICI Plant Protection (Jealotts Hill) following methodlogy described elsewhere.⁷ Results of these tests are given in Table 10.

DISCUSSION

Synthesis and spectroscopy

Triorganotin derivatives of IAAH and N-MeIAAH have been synthesized by reactions between the free acid and an organotin oxide or hydroxide [Eqns 1 and 2]

$$R_3SnOH + HX \rightarrow R_3SnX + H_2O$$
 [1]
 $R = Me,Cy$ $X = N-MeIAA$
 $R = Cy$ $X = IAA$
 $(R_3Sn)_2O + 2HX \rightarrow 2R_3SnX + H_2O$ [2]
 $R = Bu$ $X = IAA, N-MeIAA$

or by the reaction between an organotin halide and the sodium salt of the ligand (Eqn 3):

$$Me_3SnCl + Na(IAA) \rightarrow Me_3Sn(IAA) + NaCl$$
 [3]

This latter reaction has also been used to prepare Me₃Pb(IAA), although in general yields are lower by this route than in reactions involving the acid form of the ligand.

Mass spectra, obtained under EI (electron ionization) conditions, confirm the composition

of the compounds prepared, although parent ions are either weak or completely unobserved (Table 2). Under milder CI (chemical ionization, isobutene) fragmentation, a parent ion was observed for Bu₃Sn(IAA) along with substantial abundances for the high-mass ions Bu₂Sn(IAA) and Bu₃Sn. In all spectra the most abundant (100%) ion is the ligand $-CO_2$. A general feature of these data is that even-electron ions decompose with loss of a neutral group to give other even-electron fragments. Loss of oddelectron fragments from even-electron ions is not common, as indicated by the absence of oddelectron ions such as R₂Sn⁺ or RSnL⁺ as current carriers. R₂SnH⁺ species are observed, indicating the preferred loss of neutral alkene rather than alkyl [Eqn 4]:

$$Bu_3Sn^+ \rightarrow Bu_2SnH^+ + CH_3CH_2CH = CH_2$$
 [4]

For example, in the mass spectrum of Bu₃Sn(N-MeIAA), Bu₂SnH⁺ is observed at 6.9% abundance.

Vibrational spectra (Table 3) segregate the compounds into two groupings. The two tricyclohexyltin compounds form the first group, in which $\Delta v_{\rm asym}({\rm CO}_2)$ between solid and solution phases is $\leq 20\,{\rm cm}^{-1}$. For Cy₃Sn(IAA), dissolution in CHCl₃ induces an upfield shift of v(N-H) of

Table 2 Selected mass spectral (70 eV EI) data

Compound	Parent +	R ₂ SnL ⁺	R ₃ Sn ⁺	LSn+	RSn+	Sn ⁺ /SnH ⁺
Cy ₃ Sn(IAA)					_	
m/z	_	460	369	294	203	120/121
Abundance(%)		85.5	3.3	19	30	10/12
Cy ₃ Sn(N-MeIAA)						
m/z	_	474	369	308	203	120/121
Abundance (%)		15	1	3	24	3.2/6
Bu ₃ Sn(IAA) ^a						
m/z	_	408 ^b	291	294	177	120/121
Abundance (%)		60	8	3	18	3/5
Bu ₃ Sn(N-MeIAA)						
m/z	479	422	291	308	177	120/121
Abundance (%)	1.3	35	5	4.5	10	2/4
Me ₃ Sn(IAA)						
m/z	339	324	165	295°	135	120/121
Abundance (%)	3.2	4	12.6	1	2	1/0
Me ₃ Sn(N-MeIAA)						
m/z	353	338	165	308	135	_
Abundance (%)	3.2	3	5	1	1	

^aUnder C.I. conditions: 466(44%), 408(60%)^b, 291(94%), 120/121(3.6/4.2%). ^bParent ion minus C_4H_{10} . ^cHSn(IAA).

Table 3 Vibrational spectroscopic data (cm⁻¹)^a

Compound	Matrix	ν(N—H)	$v_{\rm asym}({ m CO_2})$	$v_{\text{sym}}(\text{CO}_2)$	$v_{asym}(Sn-C)$	v _{sym} (Sn—C)
IAAH	KBr	3390	1690	1400	•	
	CHCl ₃	3470	1710	1410		
N-MelAAH	KBr		1700			
Me ₃ Sn(IAA)	KBr	3358	1574br	1400	558	_
	CHCl ₃	3470	1640	1330	550	545
Me ₃ Sn(N-MeIAA)	KBr		1565	1400	542 ^b	520 vw ^b
3 (,	CHCl ₃		1645	1330	542	540
Bu ₃ Sn(IAA)	KBr	3350br	1575br	1380		
, ,	CHCl ₃	3470	1637	1340		
Bu ₃ Sn(N-MeIAA)	KBr		1575br	1390		
	CHCl ₃		1642	1335		
Cy ₃ Sn(IAA)	KBr	3295	1615	1445		
	CHCl ₃	3480	1635	1440		
Cy ₃ Sn(N-MeIAA)	KBr		1640	1340		
	CHCl ₃		1640	1340		
Mc ₃ Pb(IAA)	KBr "	3395, 3275 br	1562	1380	495°	488w ^c

^aIR data unless indicated otherwise. ^bRaman: 543vw, 518. ^cv_{asym, sym}(Pb—C) respectively.

 $185\,\mathrm{cm^{-1}}$ with a change in band profile from broad (solid state) to sharp. Taken collectively, these data imply N—H...O=C hydrogen bonding in this compound, a situation confirmed by an X-ray structure of this species.³ For Cy₃Sn(N-MeIAA) where H-bonding is precluded, $\nu_{\mathrm{asym}}(\mathrm{CO}_2)$ is phase-independent and at a frequency characteristic of a unidentate ligand, thereby implying tetrahedral coordination here also.

For each of the four compounds based upon trimethyl- or tributyltin residues, $v_{asym}(CO_2)$ moves ca 80 cm⁻¹ to higher wavenumber upon going from solid to solution states. The low frequency of $v_{asym}(CO_2)$ in the solid state $(\sim 1570 \,\mathrm{cm}^{-1})$ coupled with the planarity or nearplanarity of the C₃Sn moiety inferred from the pattern of bands observed for $v_{\text{sym, asym}}(Sn-C)$ in the IR/Raman spectra dictates that in the solid state the carboxylate acts in a bridging, bidentate manner, enforcing a local trans-O₂SnC₃ geometry at tin. This structure is, as is now well established, disrupted into a collection of monomeric fragments in dilute solution. In addition to the C=O:→Sn coordination, infrared data also suggest a non-passive structural role for the N-H unit in derivatives of IAAH. In the free acid, the N-H moiety is not involved in hydrogen bonding, 8 so the shift $\Delta v(N-H)$ between solid and solution spectra of 80 cm⁻¹ must arise purely from solid-state (packing) effects. Taking these data as indicating a nonH-bonding role for N—H, and $\Delta\nu$ (N—H)= $185\,\mathrm{cm^{-1}}$ as diagnostic of strong H-bonding as in Cy₃Sn(IAA),³ values of $112\,\mathrm{cm^{-1}}$ and $120\,\mathrm{cm^{-1}}$ for Me₃Sn(IAA) and Bu₃Sn(IAA) respectively imply that weak H-bonds involving N—H and presumably an oxygen of the carboxylate group are also present in the solid-state structures of the two R₃Sn(IAA) (R=Me, Bu) compounds. This analysis is vindicated by the X-ray structure of the latter compound, discussed below.

Me₃Pb(IAA) also belongs to this second structural grouping based upon IR data, but a splitting of the N—H stretching band in the solid state may suggest a more complex H-bonding array than in either of the two corresponding tin compounds.

Mössbauer (solid-state) and NMR (solution) data (Table 4) support the structural implications of the vibrational spectroscopy discussed above. Mössbauer quadrupole splitting (QS) values for the four methyl- and butyl-tin compounds (3.43–3.61 mm s⁻¹) lie in a range generally associated with the *trans*-O₂SnC₃ trigonal bipyramidal geometry at tin.⁹ Direct comparison can be made with, for example, Ph₃SnO₂CH (QS = 3.48 mm s⁻¹) which is known to adopt this structure.¹⁰ On the other hand, both tricyclohexyltin compounds have reduced QS values (3.01, 2.67 mm s⁻¹) and can arise from either tetrahedral or *cis*-O₂SnC₃ stereochemistry about tin.⁹ In view of the established tetrahedral

Table 4	¹ H.	119Sn NMR	and	¹¹⁹ Sn	Mössbauer	spectroscopic data
---------	-----------------	-----------	-----	-------------------	-----------	--------------------

Compound	² J(¹ H—C— ¹¹⁹ Sn) (Hz)	δ^{119} Sn (ppm) ^a	IS (mm s ⁻¹) ^b	QS (mm s ⁻¹) ^b	Γ^{c} (mms ⁻¹)
Me ₃ Sn(IAA)	60 ^{d, e}	135.2	1.32	3.61	1.06, 1.05
Me ₃ Sn(N-MeIAA)	56 ^d	131.6	1.35	3.43	0.93, 0.91
BuSn(IAA)		111.0	1.44	3.46	0.87, 0.82
Bu ₃ Sn(N-MeIAA)		105.3	1.35	3.46	0.87, 0.82
Cy ₃ Sn(IAA)		5.1 ^g	1.55	3.01	0.95, 0.94
Cy ₃ Sn(N-MeIAA)		3.6 ^f	1.48	2.67	0.99, 1.01
Me ₃ Pb(IAA)	84 ^g				,

^aRelative to Me₄Sn. ^b ± 0.03 mm s⁻¹. ^eFull width at half height. ^dIn CDCl₃. ^e67 Hz in (CD₃)₂CO. ^fIn toluene. ²²J(⁴H—C—²⁰⁷Pb).

nature of Cy₃Sn(IAA),³ and in the light of other spectral data, it would seem most likely that Cy₃Sn(N-MeIAA) is also four-coordinate at tin. However, it is somewhat surprising that a relatively minor modification to the indole acetic acid ligand should induce such a sizeable change in Mössbauer QS value. 119Sn NMR chemical shifts for all six organotin compounds are consistent with coordination numbers of four at tin. 11,12 In the case of Cy₃Sn(N-MeIAA), given the constancy of $v_{asym}(CO_2)$ in solid and solution states (Table 3), these data support a tetrahedral geometry at tin in the solid state as well as in solution. We have used a similar rationale in discussing the structures of triphenyltin benzoates, 13 whose crystallographic data can be interpreted in terms of either four- or fivecoordinate cis-O₂SnC₃ arrangements about tin.^{14, 15}

²J(¹H—G-²⁰⁷Pb) coupling in the ¹H NMR of Me₃Pb(IAA) is typical of five-coordinate lead, ¹⁶ but this may well arise from solvent (MeOH) coordination to the metal. Coupling constants for Me₃PbCl in donor solvents have values similar to that for Me₃Pb(IAA) in methanol, e.g. 81 Hz (pyridine), 78 Hz (acetone). ¹⁶ However, the sparing solubility of this material even in donor solvents supports the contention that this compound is a coordination polymer in the solid state.

The structures of Bu₃Sn(IAA) and Cy₂Sn(N-MeIAA)

The structure of Bu₃Sn(IAA) is shown in Fig. 1. The coordination sphere about tin is *trans*-O₂SnC₃ type as indicated spectroscopically, and follows the most common structural motif for

Table 5 Final fractional coordinates^a for non-hydrogen atoms in Bu₃Sn(IAA)

Atom	х	у	z
Sn	78122(3)	20045(3)	21346(2)
N(1)	10462(5)	-1449(5)	-137(3)
O(1)	8397(3)	434(3)	1467(2)
O(2)	7839(3)	-1027(4)	2227(2)
C(1)	8697(5)	1676(7)	3246(3)
C(2)	9733(5)	1117(8)	3274(4)
C(3)	10328(6)	1017(11)	4071(5)
C(4)	11317(7)	483(10)	4131(6)
C(5)	8372(4)	3415(6)	1493(4)
C(6)	9497(5)	3673(6)	1612(3)
C(7)	9885(5)	4641(7)	1064(4)
C(8)	10997(6)	4884(8)	1249(5)
C(9)	6278(4)	1432(7)	1890(4)
C(10)	5735(8)	1576(16)	1211(7)
C(11)	4595(12)	1150(24)	1099(10)
C(12)	4021(15)	1440(21)	692(12)
C(13)	8220(4)	-739(5)	1644(3)
C(14)	8452(5)	-1803(5)	1094(4)
C(15)	9401(5)	-1633(5)	745(4)
C(16)	9471(5)	-1565(6)	-33(4)
C(17)	10390(5)	-1551(6)	1151(4)
C(18)	10808(6)	-1563(8)	1924(5)
C(19)	11820(7)	-1475(11)	2134(6)
C(20)	12441(6)	-1300(11)	1558(7)
C(21)	12065(6)	- 1314(9)	779(6)
C(22)	11036(5)	-1411(6)	579(4)

aValues tabulated are $\times 10^5$ for Sn, $\times 10^4$ for the other atoms, with e.s.d. (estimated standard deviation) in parentheses.

triorganotin carboxylates. The intermolecular linkage [Sn-O(2'): 2.524(3)Å] is strong in comparison with that involving bulkier R_3 Sn moieties (e.g. R = Cy), but weaker than is often

Table 6 Final bond distances (Å) and angles (°) for Bu₃Sn(IAA)^a

Distances ^b			
Sn-O(1)	2.199(3)	C(1)—C(2)	1.596(8)
Sn-O(2')	2.524(3)	C(2)—C(3)	1.492(10)
Sn—C(1)	2.135(6)	C(3)—C(4)	1.423(11)
Sn—C(5)	2.134(5)	C(5)—C(6)	1.518(8)
Sn-C(9)	2.118(6)	C(6)—C(7)	1.520(8)
O(1)—C(13)	1.275(6)	C(7)—C(8)	1.496(10)
O(2)— $C(13)$	1.235(6)	C(9)—C(10)	1.296(11)
C(13)—C(14)	1.514(7)	C(10)— $C(11)$	1.571(16)
C(14)— $C(15)$	1.497(8)	C(11)—C(12)	1.009(22)
C(15)—C(16)	1.368(8)	C(16)-N(1)	1.371(8)
C(15)—C(17)	1.406(9)	C(22)—N(1)	1.361(8)
C(17)—C(18)	1.374(9)	C(20)—C(21)	1.371(12)
C(18)—C(19)	1.352(11)	C(21)—C(22)	1.373(10)
Angles ^b			
O(1)—Sn—O(2')	173.5(2)	C(1)—Sn—C(5)	116.6(3)
O(1)— Sn — $C(1)$	99.6(2)	C(1)— Sn — $C(9)$	121.9(3)
O(1)—Sn— $C(5)$	90.1(2)	C(5)— Sn — $C(9)$	119.0(3)
O(1)—Sn—C(9)	95.8(2)	Sn—O(1)—C(13)	118.2(3)
O(2')—Sn—C(1)	84.9(2)	Sn"O(2)C(13)	139.8(2)
O(2')—Sn—C(5)	83.8(2)	O(1)— $C(13)$ — $O(2)$	122.6(5)
O(2')—Sn—C(9)	85.6(2)	O(1)C(13)C(14)	117.9(5)
Sn-C(1)-C(2)	118.6(4)	O(2)—C(13)—C(14)	119.4(5)
C(1)— $C(2)$ — $C(3)$	114.9(6)	C(13)—C(14)—C(15)	115.9(5)
C(2)-C(3)-C(4)	117.2(8)	C(14)—C(15)—C(16)	126.3(6)
	_ ``	C(14)—C(15)—C(17)	126.6(5)
Sn-C(5)-C(6)	113.6(4)	C(16)—C(15)—C(17)	107.1(5)
C(5)-C(6)-C(7)	112.6(5)	C(15)-C(16)-N(1)	110.2(6)
C(6)-C(7)-C(8)	113.4(6)	C(15)—C(17)—C(18)	134.9(6)
Sn-C(9)-C(10)	123.1(6)	C(15)-C(17)-C(22)	106.4(6)
C(9)— $C(10)$ — $C(11)$	118.9(11)	C(18)—C(17)—C(22)	118.7(7)
C(19)—C(20)—C(21)	122.1(8)	C(17)-C(19)-C(20)	119.5(9)
C(19)-C(20)-C(21)	122.1(8)	_	
C(20)-C(21)-C(22)	117.1(7)	_	
C(21)-C(22)-C(17)	121.7(8)	_	_
C(17)-C(22)-N(1)	108.5(6)	_	_
C(21)-C(22)-N(1)	129.8(7)	_	_
C(16)-N(1)-C(22)	107.9(5)	_	

^aPrimed atoms are related to their umprimed counterparts (x, y, z) by $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$, while doubly primed atoms are similarly related by $\frac{3}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$. ^bE.s.d. in parentheses.

encountered in these systems. Table 7 collates structural data for selected organotin carboxylates for comparison. The unit cell of $Bu_3Sn(IAA)$ shown in Fig. 2 also reveals that the polymer chains are held together by intermolecular hydrogen bonds $N(1)\cdots O(1)$ to produce an overall sheet structure. Two points are worth making about this H-bonding scheme in comparison with that previously described for

 $Cy_3Sn(IAA)$, whose lattice structure is shown in Fig. 3 for reference. Firstly, the H-bonds in $Bu_3Sn(IAA)$ [N(1)···O(1): 3.128 Å] are weak and of secondary importance in terms of bonding to the intermolecular Sn—O bonds along the chain, while in $Cy_3Sn(IAA)$ a stronger H-bond (2.891 Å) exists only at the expense of any $C=O: \rightarrow Sn$ interactions. Secondly, in $Bu_3Sn(IAA)$ the oxygen of the carboxylate which engages in the H-

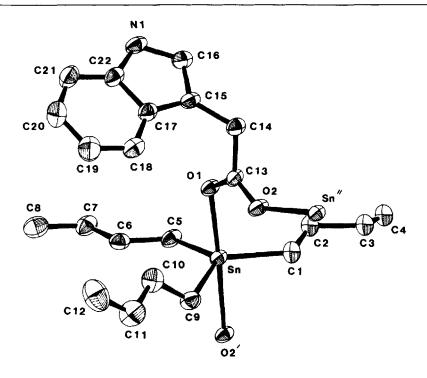


Figure 1 The asymmetric unit of tributylstannyl 3-indolylacetate showing the labelling scheme used in the text.

Table 7 Comparative structural data (Å) for selected organotin carboxylates

		Sn-O					
Compound	Sn-O	Intra	Inter	c=0	C-O	H-bond ^a	Ref.
IAAH				1.223	1.298	2.665	8
Bu ₃ Sn(IAA)	2.199(3)	3.120	2.524(3)	1.235(6)	1.275(6)	3.128	This work
Cy ₃ Sn(N-MeIAA)	2.05(1)	2.78(1)	_	1.25(2)	1.26(2)		This work
Cy ₃ Sn(IAA)	2.086(3)	2.929	_	1.213(7)	1.302(7)	2.891	3
Cy ₃ SnO ₂ CCH ₃	2.12(3)	2.94(4)	3.84	1.25(9)	1.39(8)	_	20
Cy ₃ SnO ₂ CCF ₃	2.08(4)	3.11	3.70	1.20(5)	1.28(4)		21
Ph ₃ SnO ₂ CC ₆ H ₄ (N ₂ R)-o ^b	2.070(5)	2.463(7)	_	1.224(1)	1.296(8)	2.94°	22
Ph ₃ SnO ₂ CC ₆ H ₄ (OH)-o	2.083	3.071	3.035	1.232	1.301	2.71	15
$Ph_3SnO_2CC_6H_4(NMe_2)-2$	2.115(6)	2.564(7)	_	1.22(1)	1.272(9)	_	14
Ph ₃ SnO ₂ CC ₆ H ₄ (NH ₂)-4	2.072(2)	2.629(2)	_	1.236(4)	1.306(4)	_	14
Ph ₃ SnO ₂ CCH ₃	2.185	3.206(3)	2.349(3)	1.251(5)	1.263(5)		4
Me ₃ SnO ₂ CCH ₂ NH ₂	2.21(1)	3.23(2)	2.46 ^d	1.23(3)	1.34(3)	2.74	23
Me ₃ SnO ₂ CCH ₃	2.205(3)	3.23	2.391(4)	1.240(6)	1.269(5)	_	24

 $[^]a\mathrm{CO}\cdots\mathrm{HO}$ or $\mathrm{CO}\cdots\mathrm{HN}$. $^b\mathrm{R}=2$ -hydroxy-5-methylphenyl. $^c\mathrm{Also}$ contains two $\mathrm{OH}\cdots\mathrm{N}$ bonds at 2.62, 2.58 Å. $^d\mathrm{N}$: $\rightarrow\mathrm{Sn}$.

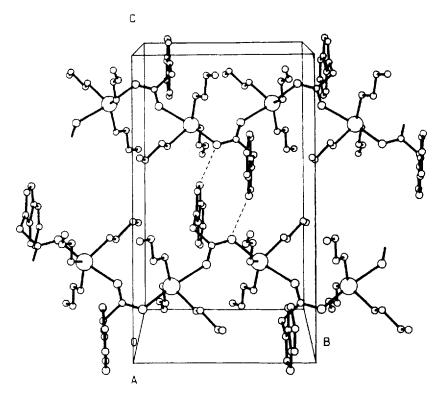


Figure 2 The unit cell of Bu₃Sn(IAA), viewed along the a-axis. H-bonds are marked ---

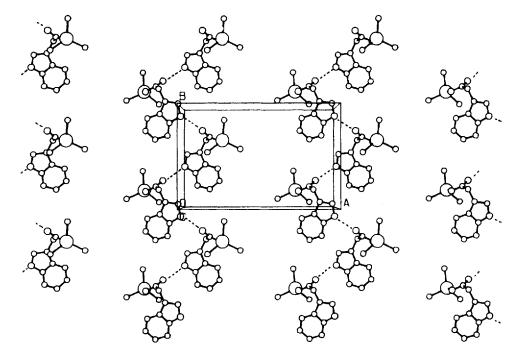


Figure 3 The unit cell of Cy₃Sn(IAA), viewed along the c-axis. Data are taken from ref. 3. H-bonds are marked ---

bonding array [0(1)] is covalently rather than coordinatively bonded to tin, and is formally the oxygen singly bonded to carbon in the RCO₂-rouping. This contrasts with the more usual C=0··HN arrangement which occurs in Cy₃Sn(IAA) and again underlines the fact that in Bu₃Sn(IAA) the formation of H-bonds is secondary to build-up of the coordination polymer.

Given the similar Lewis acidity of tin in both Bu₃Sn(IAA) and Cy₃Sn(IAA), the contrasting structures adopted by these two compounds must arise from the different steric requirements of Bu versus Cy. Bulky hydrocarbon groups on tin inhibit polymer formation by increasing the steric clashes between themselves and the substituent on the carboxylate group, in this case (C₈H₆N)CH₂. We have discussed this phenomenon more fully on a previous occasion¹⁰ when comparing the structures of Ph₃SnO₂CR (R=H, Me). We have also suggested, from an MO viewpoint, that where the preferred trans-O₂SnC₃ geometry at tin is inhibited on steric grounds, formation of a tetrahedral geometry is the likely result, rather than the alternative fivecoordinate structure cis-O₂SnC₃.

The extent to which H-bonding influences the tin coordination sphere in Cy₃Sn(IAA) can be determined by comparing the structure of Cy₃Sn(N-MeIAA) (Fig. 4). The intramolecular, 'chelating' Sn-O(2) bond is shorter in the Nmethylated derivative [2.780 versus 2.929 Å], but the pattern of bond angles about tin is remarkably similar in the two cases. As with Cy₃Sn(IAA), which has already been fully discussed,3 there are no systematic angular changes to imply that a tetrahedral-to-trigonal bipyramidal transition is in effect with close approach of O(2) to tin. The C-Sn-C angles are larger than those for C-Sn-O, but this is to be expected under the rehybridization ideas of Bent.¹⁷ The only piece of evidence to support a chelating carboxylate ligand is the equality of the two C-O bonds within the CO₂ unit, a result which is quite out of keeping with, for example, the shortness of the Sn-O(1) bond [2.05(1)Å]. The large standard deviations in the C—O bonds may be clouding the issue here, but clearly interpretation of the structural data is somewhat subjective. The data for Cy₃Sn(N-MeIAA) is paralleled in a series of triphenyltin benzoate structures which follow a similar structural pattern and which have been discussed as having less $\sim 25\%$ trigonal bipyramidal than character. 14,15 In the case of both the

Table 8 Final fractional coordinates ($\times 10^4$) for non-hydrogen atoms in Cy₃Sn(N-MeIAA)^a

Atom	x	у	Z
Sn	5564(1)	2452(1)	1515(1)
N(1)	9300(14)	-908(9)	345(7)
O(1)	6462(11)	1300(8)	1229(6)
O(2)	4360(12)	849(8)	1186(6)
C(1)	4246(12)	2892(9)	628(7)
C(2)	4747(13)	1636(10)	-116(7)
C(3)	3811(15)	2966(10)	-724(9)
C(4)	3605(14)	3920(10)	-671(8)
C(5)	3077(15)	4197(11)	47(8)
C(6)	4010(14)	3863(10)	690(8)
C(7)	4689(13)	2315(9)	2571(7)
C(8)	3142(14)	2169(11)	2512(9)
C(9)	2528(17)	2034(13)	3249(10)
C(10)	3266(15)	1336(12)	3698(9)
C(11)	4717(15)	1494(13)	3760(9)
C(12)	5379(15)	1555(11)	3006(8)
C(13)	7431(14)	3190(14)	1557(8)
C(14)	8375(15)	2934(11)	2167(9)
C(15)	9665(19)	3437(15)	2177(11)
C(16)	10234(18)	3634(15)	1531(9)
C(17)	9308(15)	3954(12)	932(9)
C(18)	7982(16)	3398(13)	927(10)
C(19)	5596(16)	697(13)	1149(8)
C(20)	6047(16)	-247(11)	1016(10)
C(21)	7466(15)	-457(10)	891(8)
C(22)	8624(15)	-334(10)	1383(8)
C(23)	8775(15)	41(10)	2075(8)
C(24)	10077(17)	81(12)	2387(11)
C(25)	11181(17)	-213(12)	2006(10)
C(26)	11076(18)	-540(12)	1330(10)
C(27)	9749(16)	-618(12)	1026(9)
C(28)	7958(17)	-814(12)	281(10)
C(29)	10183(18)	-1340(14)	- 187(10)

^aE.s.d. in parentheses.

benzoates¹³ and Cy₃Sn(N-MeIAA), our recourse is to follow the implications of the spectroscopic data which incline us toward describing these compounds as tetrahedral at tin. What is clear, however, is that the H-bonding in Cy₃Sn(IAA) alone does not prevent formation of a five-coordinate tin (of whatever geometry) but merely acts as a useful source of bond energy when C=O:→Sn coordination is sterically and/or electronically disfavoured.

Biocidal testing

The biocidal activity of Me₃Sn(IAA) and Cy₃Sn(IAA) against a range of organisms is given

Table 9 Final bond distances (Å) and angles (°) for Cy₃Sn(N-MeIAA)^a

Distances			
Sn—C(1)	2.16(1)	C(11)—C(12)	1.55(
Sn-C(7)	2.16(1)	C(13)—C(14)	1.49(
Sn—C(7)	2.16(1)	C(13)—C(14)	1.49(
Sn-C(13)	2.16(1)	C(13)—C(18)	1.33(
Sn—O(1)	2.05(1)	C(14)—C(15)	1.49(
Sn—O(2)	2.78(1)	C(15)—C(16)	1.36(
C(1)—C(2)	1.52(2)	C(16)—C(17)	1.49(
C(1)—C(6)	1.51(2)	C(17)—C(18)	1.56(
C(2)—C(3)	1.51(2)	O(1)—C(19)	1.26(
C(3)—C(4)	1.48(2)	O(2)—C(19)	1.25(
C(4)—C(5)	1.49(2)	C(19)—C(20)	1.53(
C(5)— $C(6)$	1.56(2)	C(20)—C(21)	1.46
C(7)—C(8)	1.55(2)	C(21)—C(22)	1.45(
C(7)— $C(12)$	1.56(2)	C(21)-C(28)	1.35
C(8)—C(9)	1.51(2)	C(22)—C(23)	1.40
C(9)—C(10)	1.52(2)	C(22)-C(27)	1.38(
C(10)—C(11)	1.46(2)	C(23)—C(24)	1.39(
C(28)—N(1)	1.34(2)	C(24)—C(25)	1.39(
C(29)—N(1)	1.48(2)	C(15)—C(26)	1.34
	_	C(26)—C(27)	1.410
	_	C(27)-N(1)	1.39
Angles			
C(1)—Sn—C(7)	117.1(5)	C(7)—C(8)—C(9)	112.5(1
C(1)—Sn—C(13)	111.1(6)	C(8)—C(9)—C(10)	112.3(1
C(7)—Sn—C(13)	112.7(6)	C(9)—C(10)—C(11)	112.4(1
C(1)—Sn—O(1)	109.4(5)	C(10)—C(11)—C(12)	112.5(1
C(7)—Sn—O(1)	109.6(5)	C(11)—C(12)—C(7)	108.1(1
C(13)—Sn—O(1)	94.7(6)	Sn-C(13)-C(14)	113.8(1
Sn—C(1)—C(2)	112.9(8)	Sn—C(13)—C(18)	117.7(1
Sn—C(1)—C(6)	110.0(9)	C(14)C(13)C(18)	116.9(1
C(2)— $C(1)$ — $C(6)$	112.2(13)	C(13)— $C(14)$ — $C(15)$	112.9(1
C(1)— $C(2)$ — $C(3)$	111.5(11)	C(14)C(15)C(16)	118.8(1
C(2)— $C(3)$ — $C(4)$	111.3(13)	C(15)—C(16)—C(17)	116.9(1
C(3)-C(4)-C(5)	113.0(14)	C(16)—C(17)—C(18)	108.8(1
C(4)-C(5)-C(6)	116.0(13)	C(17)—C(18)—C(13)	119.4(1
C(5)—C(6)—C(1)	110.8(12)	Sn-O(1)-C(19)	111.1(1
Sn—C(7)—C(8)	112.1(9)	O(1)— $C(19)$ — $O(2)$	121.2(1
Sn—C(7)—C(12)	110.6(9)	O(1)—C(19)—C(20)	120.4(1
C(8)—C(7)—C(12)	110.1(12)	O(2)— $C(19)$ — $C(20)$	118.3(1
C(19)—C(20)—C(21)	121.1(14)	C(24)—C(25)—C(26)	123.3(1
C(20)—C(21)—C(22)	128.1(15)	C(25)—C(26)—C(27)	116.1(1
C(20)—C(21)—C(28)	126.2(15)	C(26)-C(27)-C(22)	122.6(1
C(22)— $C(21)$ — $C(28)$	105.6(14)	C(26)-C(27)-N(1)	130.5(1
C(21)— $C(22)$ — $C(23)$	132.8(14)	C(22)-C(27)-N(1)	106.7(1
C(21)— $C(22)$ — $C(27)$	107.4(14)	C(27)— $N(1)$ — $C(28)$	109.5(1
C(23)— $C(22)$ — $C(27)$	119.7(14)	C(27)— $N(1)$ — $C(29)$	123.8(1
C(22)—C(23)—C(24)	117.5(15)	C(28)-N(1)-C(29)	126.4(1
C(23)— $C(24)$ — $C(25)$	120.6(17)		•

^aE.s.d. in parentheses.

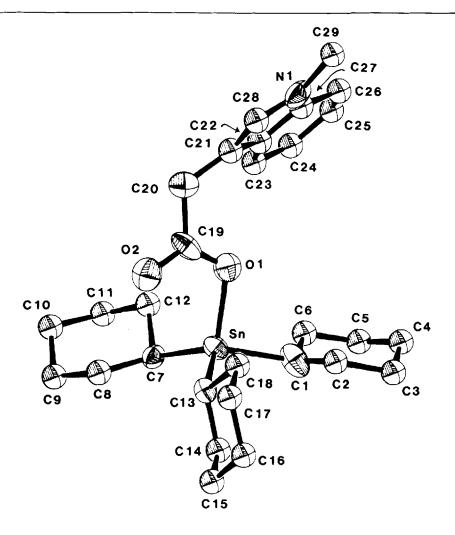


Figure 4 The asymmetric unit of tricyclohexylstannyl N-methyl-3-indolylacetate showing the labelling scheme used in the text.

in Table 10. Both compounds show broadspectrum activity, with the trimethyltin compound generally being the more active of the Unfortunately, however, mammalian toxicity of methyltin compounds in general¹⁸ largely negates these results in terms of commercial exploitation. In pesticidal tests, active Me₃Sn(IAA) proved against Myzus persicae (potato peach aphid), Musca domestica (housefly) and Chilo partellus (maize sorghum stem borer) while Cy₃Sn(IAA) was totally inactive, but against Blattella germanica (German cockroach) the reverse was found to be true. Both compounds exhibited >80% kill of Tetranychus urticae (two-spotted mite) and have similar activity levels in this respect to Cy₃SnOH (Plictran⁴⁰). Cy₃Sn(IAA) is thus much less active than Cy₃Sn(mbt)⁷ (mbt=anion of 2-mercaptobenzthiazole) against both *Musca domestica* and *Chilo partellus* at the same concentration level. In fungicidal and bactericidal tests, Cy₃Sn(IAA) again proved to be slightly less active than Cy₃Sn(mbt) against *Aspergillus niger* and *Botrytis cinerea* (grey mould), though similarly active against *Plasmopora viticola* (vine downy mildew) and *Venturia inaequalis* (apple scab).

The general level of activity of these two organotin 3-indolylacetate derivatives is in keeping with the idea that four-coordinate tin monomers or five-coordinate tin polymers are often more active than chelated, five-coordinate

Organism	Concentration (ppm, $\mu g g^{-1}$)	Me ₃ Sn(IAA)	Cy ₃ Sn(IAA)
Pesticidal testing ^a			
Tetranychus urticae	500	9	9
Myzus persicae	500	9	0
Musca domestica	500	9	0
Chilo paretellus	500	9	0
Nilaparvata lugens	500	0	0
Blatella germanica	500	0	9
Fungicidal and bactericidal activity ^b			
Cladosporium sphaerospermum	25		2
Aspergillus niger	25		0
Botrytis cinerea	25		0
Septoria nodurum	25		4
Plasmopara viticola (vine) ^c	100		4
Venturla inaequalis (apple)c	100		4
Pyricularia oryzae (rice) ^c	100		3 ^d

Table 10 Biocidal testing of Me₃Sn(IAA) and Cy₃Sn(IAA)

 $[^]a0=0-49\%,~9=80-100\%$ kill. $^b4=no$ disease, 3=trace-5%,~2=6-25%,~0=>60% disease. $^cIn~vivo$ tests. $^dSlightly~phytotoxic.$

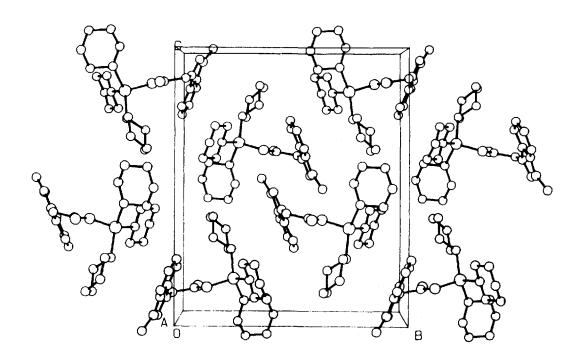


Figure 5 The unit cell of Cy₃Sn(N-MeIAA) viewed along the a-axis.

tin species. 19 The unifying feature of the two active groupings in contrast to the third is that these more readily give four-coordinate entities in solution (the coordination polymer by fragmentation) or are more likely to be easily hydrolysed to R₃Sn(H₂O)₂⁺-type species. The anion in these systems is thus of secondary importance, since in this and other studies using biocidally active ligands we have been unable to exceed the activity of simple Cy₃SnOH. The ligand thus probably only affects the rate of formation of a ligand-free active organotin probably $R_3Sn(H_2O)_2^+$ entity—most Sn-O. Sn-S, Sn-N bonds are more readily hydrolysed than Sn-C bonds-or possibly the pre-hydrolysis transport of the intact compound to the active site of the system. Either way, the ligand is not totally irrelevant as comparison of the activity of Cy₃Sn(IAA) and Cy₃Sn(mbt) (above) shows.

In order to obtain possible synergistic activity between an organotin and a ligand of complementary activity, it would seem to us that the ligand must be incorporated into the R₃Sn—system. That is, it should be C-bonded to tin, rather than through readily hydrolysable Sn-O, Sn-S or Sn-N (etc) bonds. Future publications in this series will report our synthetic and structural findings in this area.

Acknowledgement We thank ICI Plant Protection (Jealott's Hill) for carrying out the screening tests.

REFERENCES

- Molloy, K.C., Blunden, S.J. and Hill, R. J. Chem. Soc., Dalton Trans., 1987: in press
- Corbett, JR Biochemical Modes of Action of Pesticides, Academic Press, New York, 1974
- Molloy, K.C., Purcell, T.G., Hann, E., Schumann, H and Zuckerman, J.J. Organometallics, 1986, 5: 85
- Molloy, K.C., Purcell, T.G., Quill, K. and Nowell, I.W. J. Organomet. Chem., 1984, 267: 237

- Rosemund, P, Meyer, G and Weston, M Chem Ber., 1975, 108: 3528
- Sheldrick, GM SHELX. A Computer Program for Crystal Structure Determinations, Univ. of Cambridge (UK), 1976.
- Molloy, K.C., Purcell, T.G., Cunningham, D., McArdle P. and Higgins T. Appl. Organomet. Chem., 1987, 1: 119, and references therein
- Karle, IL, Britts, K and Gum, P Acta Crystallog., 1964, 17: 496
- Davies, AG and Smith, PJ Comprehensive Organometallic Chemistry, Wilkinson, G, Stone, FGA and Abel, EW (eds), Pergamon Press, Oxford, 1982, Chapter 11, p 525
- Molloy, K.C., Quill, K and Nowell, I.W. J. Chem. Soc., Dalton Trans., 1987: 101
- Davies, AG and Smith PJ Comprehensive Organometallic Chemistry, Wilkinson, G, Stone, FGA and Abel, EW (eds), Pergamon Press, Oxford, 1982, Chapter 11, p 527
- Wrackmeyer, B Annual Reports on NMR Spectroscopy, Webb, GA (ed.), 1982: 519
- Molloy, K.C., Quill, K., Blunden, S.J. and Hill, R. Polyhedron, 1986, 5: 959
- Swischer, RG, Vollano, JF, Chandrasekhar, H, Day, RO and Holmes, RR Inorg. Chem., 1984, 23: 3147
- Vollano, JF, Day, RO, Rau, DN, Chandrasekhar, V and Holmes, RR Inorg. Chem., 1984, 23: 3153
- Harrison, PG Comprehensive Organometallic Chemistry, Wilkinson, G, Stone, FGA and Abel, EW (eds), Pergamon Press, Oxford, 1982, Chapter 12, p 633
- 17. Bent, HA Chem. Rev., 1961, 61: 275
- Smith, PJ Toxicological Data on Organotin Compounds, International Tin Research Institute, London, 1978, Publication 538
- Blunden, S.J., Smith, P.J. and Sugavanam, B Pestic. Sci., 1984, 15: 253
- Alcock, NW and Timms, RE J. Chem. Soc. (A), 1968: 1876
- Calogero, S, Ganis, P, Peruzzo, V and Tagliavini, G J. Organomet. Chem., 1980, 191: 381
- Harrison, PG, Lambert, K, King TJ and Magee, B J. Chem. Soc., Dalton Trans., 1983: 363
- 23. Ho, BYK, Molloy, KC, Zuckerman, JJ, Reidinger, F and Zubieta, JA J. Organomet. Chem., 1980, 187: 213
- Chih, H and Penfold, BR J. Cryst. Mol. Struct., 1973, 3:
 285