Studies in Aryltin Chemistry: Part 7. Spectroscopic and Fungicidal Studies of Some p-Substituted Tri-aryltin Acetates, Oxides and Hydroxides

I. Wharf, 1* H. Lamparski2 and R. Reeleder3

The fungicidal activity of a series of aryltin compounds, $(p-ZC_6H_4)_3SnX$ (X=OAc, OH, or 1/2O), where Z=F, Cl, CH₃, CH₃O, C₂H₅ or (CH₃)₃C, and for which IR and NMR (119 Sn) data are reported, has been assessed by radial growth assays on Aspergillus niger, Botrytis cinera, Mucor hiemalis, Fusarium solani and Penicillium chrysogenum, and the results compared with those for the Ph₃SnOAc and Ph₃SnOH archetypes. In most cases, parasubstitution only slightly reduces biocidal activity, but with p-CH₃O the aryltin is completely ineffective. This result correlates with the seemingly decreased ability of the '(p-CH₃OC₆H₄)₃Sn' moiety to achieve trigonal-bipyramidal five-coordinate geometry with oxygen atoms in the axial positions, all other Ar₃SnOAc and Ar₃SnOH having this geometry in the solid state. A model for fungicidal action is proposed based on the need for the organotin inhibitor to attain the above geometry in the active site that it occupies in the ATPase enzyme, being the required condition for its biological activity. © 1997 John Wiley & Sons, Ltd.

Appl. Organometal. Chem. 11, 969–976 (1997) No. of Figures: 4 No. of Tables: 3 No. of Refs: 37

Keywords: aryltin; fungicidal; biological activity

Received 10 March 1997; accepted 10 May 1997

* Correspondence to: I. Wharf. Contract grant sponsor: Government de Québec, Fonds FCAR.

INTRODUCTION

Triphenyltin compounds (Ph₃SnOAc, 'Brestan'; Ph₃SnOH, 'Du-Ter') have enjoyed extensive use as commercial fungicides¹ and a comprehensive review of the earlier research on these compounds is available.² In general, although the effect on the activity of Ph₃SnX of varying anion X is still considered secondary,3 interest in anions which may increase the availability of the fungicide at the active sites in the test organisms, or which are biologically active in their own right, has remained high.⁴⁻⁶ In contrast, structure-activity studies probing electronic and/or steric effects using substituents on the phenyl rings are relatively few,^{5,7–12} and only recently, while this work was reaching completion, was a study of the same type as this one reported.¹³ This appeared to confirm that substitution on the phenyl rings at the *para*-position in triaryltins also does not seem to have any major effect on their biological activity.

This work differs in two main aspects from earlier studies.

- (a) A wider range of *para*-substituents has been used so as to make possible a more thorough study of both the electronic and steric factors influencing the fungicidal activity of the triaryltin moiety.
- (b) The systems chosen for study, Ar₃SnOAc, Ar₃SnOH and Ar₃Sn)₂O, are analogues of the commercial fungicides, 'Brestan' and 'Du-Ter', thus allowing a more direct comparison to be made with these compounds as well as avoiding the additional

¹ Department of Chemistry and Chemical Technology, Dawson College, 3040 Sherbrooke Street West, Montreal, Quebec, Canada H3Z 1A4

² Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

³ Department of Plant Science, McDonald College, Ste-Anne-de-Bellevue, Quebec, Canada H9X 1CO

phytoxicity of the Ar₃SnCl system³ used in the earlier work.¹³

EXPERIMENTAL

All experimental details, including materials used, microanalyses and IR and NMR (¹³C, ¹¹⁹Sn; CDCl₃) procedures, have been given elsewhere. ^{14,15} All precursors, *p*-ZC₆H₄SnX (X=Cl, Br, I), are previous preparations, ^{15,16} while bioassay techniques followed standard protocols. ¹⁷

Syntheses

Shaking an ethereal solution of the Ar_3SnX (X=Cl or Br) with 10% KOH (aq.) gave the oxide, while the hydroxide was obtained by recrystallizing the oxide from 90% aqueous ethanol. The acetate was produced either by (1) refluxing an acetone solution of the chloride and excess sodium acetate for 2–3 days, evaporating the filtrate and extracting the residue obtained with hexane or benzene, or by (2) reacting the hydroxide with 2–3-fold excess acetic acid in 2,2'-dimethoxypropane. The phenyltin analogues were obtained by standard procedures, 19,20 and tris (p-methoxyphenyltin acetate has already been reported. 21

Analytical and spectroscopic data are given in Table 1 for all compounds prepared in this work.

Radial growth studies

The test fungi used in this study are listed in Table 2. Each fungus was cultured for 7–10 days on potato dextrose agar (PDA). Using aseptic procedures, ethanol (95%) solutions (6.0 ml) containing the test compound were added to molten PDA (50 °C) to give solutions with concentrations of 8.0, 6.0, 4.0, 2.0 and 1.0 mg l⁻¹ of the fungicide as well as a control with zero fungicide, which were then poured into 9-cm Petri dishes — three for each fungus and concentration. A 10-mm disc of the fungus was placed on the centre of each plate, which was then incubated at 25 ± 1 °C for 7–10 days. Colony diameters (along two 90° axes) were measured every 24 h for two days, and then every 48 h. Average growth rates (mm d⁻¹), after the initial slow phase, were then used to provide percentage growth inhibition values. Probit analysis²⁴ of these data gave the ED₅₀ value, i.e. the concentration required for 50% growth rate inhibition compared with the control for each fungus-compound combination.

RESULTS

Synthesis and characterization

Initially, samples of Ar_3SnOAc , $(Ar_3Sn)_2O$ and Ar_3SnOH $(Ar=p-ZC_6H_4)$ were prepared for each substituent $(Z=F,\ Cl,\ Ch_3\ and\ CH_3O)$ but as bioassays (*vide infra*) showed the substituent effect on activity to be essentially the same regardless of the organotin system used, only one compound of each type was prepared in later work, i.e. the acetate $(Z=C_2H_5)$ or the oxide $[Z=(CH_3)_3C]$. Infrared data [Table 1(a)] show that all but one of the acetates are polymers in the solid state²⁴ as confirmed by X-ray analysis for Ph_3SnOAc , Ph_3SnOAc , except when Palos Conformation (Conformation of the solid state).

The oxide/hydroxide pairs are readily interconverted by recrystallizing from absolute or aqueous (10%) ethanol respectively, with the conversion best monitored by their IR spectra^{20, 22, 26, 27} [ν_{as} (SnOSn) or ν (OH)]. Only with Z=CH₃O does this not occur, the oxide remaining unchanged even after refluxing with ethanol–water (1:1) for several hours. Since far-IR data for Ar₃SnOH [Table 1(c)] follow those for Ph₃SnOH, which has been shown by X-ray diffraction studies to be polymeric,²⁸ it is clear that the tin atom in the (p-CH₃OC₆H₄)₃Sn moiety is very reluctant to become five-coordinate with oxygen atoms in the axial positions.

The ¹¹⁹Sn and ¹³C solution NMR data for the four-coordinate monomers examined here, although limited, allow some comparison with the previous analysis of substituent effects in the NMR spectra of similarly four-coordinate Ar₄Sn and Ar_3SnX (X=Cl, Br, I, NCS). For the acetate system, the best correlation is with $\sigma_{\rm p}$ $(n=6, \rho=0.927)$ but as with the other Ar₃SnX, it is improved by omitting the Z=H datum point, resulting in the line (n=5, $\rho=0.961$), shown in Fig. 1. Thus the effect of acetate on tin-119 chemical shift data appears to resemble that of iodide or N-thiocyanate. In contrast, the oxide system, albeit with very limited data, correlates best with $\sigma_{\rm R}^{0}$ (n=5, ρ =0.897), like the Ar₄Sn series, although in this case the correlation is not improved by omitting the phenyl datum point.

Bio-assays

Typical radical growth data showing the effects of inhibitor concentration on fungal growth rates are shown for Ar₃SnOAc acting on *M. hiemalis*, and for Ar₃SnOH and (Ar₃Sn)₂O acting on *Asp*.

Table 1. Analytical a and spectroscopic $(IR^{b,\,c}$ and $NMR^{b,\,d})$ data (a) $(p\text{-}ZC_6H_4)_3SnOAc$

Recrystallization solvent M.p. (°C)	CH ₃	F	Cl	CH 021	C II			
	Haman:		CI	CH_3O^{21}	C_2H_5			
	Hexane	Cyclohexane	_	Cyclohexane	Pentane			
r·()	113–114 (113) ^e	135–136	148–149 (148.5–9.5) ^f	108–110	95–96			
C(%)	61.02 (61.23)	52.18 (51.88)	46.93 (46.88)	54.75 (55.35)	62.98 (63.32)			
H(%)	5.52 (5.36)	3.50 (3.27)	3.14 (2.95)	4.86 (4.85)	6.16 (6.13)			
	Z							
-	Н	CH ₃	F	Cl	CH ₃ O ²¹	C_2H_5		
IR data								
$\nu_{\rm as}$ (CO ₂)	1533	1535	1545	1523	1646	1538		
	(1641)	(1640)	(1641)	(1642)	(1639)	n.a.		
$\nu_{\rm s}$ (CO ₂)	1423	1431	1407	1418, 1413	1305	1415		
. (60)	(1315)	(1319)	(1320)	(1318)	(1317)	n.a.		
$\Delta \nu ({\rm CO}_2)$	110	104	138	108	341	123		
	(326)	(321)	(321)	(324)	(322)	n.a.		
NMR data								
$\delta(^{119}\mathrm{Sn})$	-113.63	-102.67	-110.85	-116.00	-94.34	-105.00		
$^{1}J(^{119}Sn-^{13}C)$	648.4	656.7	678.6	669.5	680.1	656.1		
$^{2}J(^{119}Sn-^{13}C)$	48.0	49.8	56.4	55.7	55.3	49.6		
$^{3}J(^{119}Sn-^{13}C)$	62.3	64.4	70.4	67.6	68.7	64.3		
(b) $[(p-ZC_6H_4)_3Sn]_2O$								
	Z							
_	CH ₃	F	Cl	CH ₃ O	(CH ₃) ₃ C			
Recrystallization solvent	Heptane	Ethanol	Hexane	Ethanol	Ethanol			
M.p. (°C)	108 (106–107.5) ^g	125 (dec.)	145 (dec) (121–123) ^g	123–24	>350 (dec)			
C(%)	62.87	52.34	47.03	56.94	68.63			
	(63.04)	(52.48)	(46.86)	(56.29)	(68.46)			
H(%)	5.58	3.14	2.65	5.00	7.09			
,	(5.29)	(2.94)	(2.62)	(4.72)	(7.48)			
	Z							
-	Н	CH ₃	F	Cl	CH ₃ O	(CH ₃) ₃ C		
IR data								
$\nu_{\rm as}$ (SnOSn)	776	761	748,754sh	759,761	771	n.a.		
$\delta(SnOSn)$	382	386	412	410	395	n.a.		
NMR data								
δ (119Sn)	-83.47	-73.74	n.a.	-76.17	-68.65	-79.47		
$^{3}J(^{119}Sn-^{119}Sn)$	410.8	426.7	n.a.	420.6	407.2 428			
$^{1}J(^{119}Sn-^{13}C)$	624.9	634.7	n.a.	642.4	652.1	613.3		
$^{2}J(^{119}Sn-^{13}C)$	42.1	46.9	n.a.	46.9	51.0	n.a.		
$^{3}J(^{119}Sn-^{13}C)$	62.1	61.4	n.a.	61.7	65.8	n.a.		
	02.1	01. - T	11.4.	01.7	05.0	11.α.		

^{© 1997} John Wiley & Sons, Ltd.

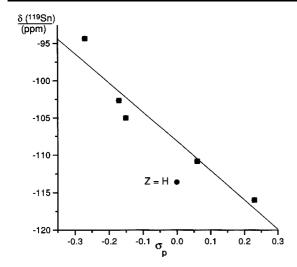
Table 1. Continued.

(c) $(p - ZC_6H_4)_3SnOH$				
	Z			
	Н	CH ₃	F	Cl
M.p. (°C)	_	108 (107–108) ^h	135–136 (135–136) ⁱ	156–157
C(%)	_	61.88 (61.66)	51.58 (51.36)	45.80 (45.97)
H(%)	_	5.58 (5.42)	3.45 (3.11)	2.79 (2.79)
IR data				
ν (OH) δ (OH) ν (SnOSn)	3617 911,897 372	3611 919 355	3617 907 384	3601 931 382

^a Calculated values or literature data in parentheses. ^b n.a., parameter not measured or not observed.

niger in Figs. 2 and, 3, respectively. [Relative radial growth data for all the inhibitor-fungus combinations used, which also follow the same trends as the two examples given above, are available from the authors.] In the former case replacing p-H by F or Cl creates only small changes in inhibitor activity, but with methoxy as the para-substituent the Ar₃SnOAc becomes completely ineffective (Fig. 2(a)). In fact it appears to promote the fungal growth rate by about 10%, well within the average experimental error, $\pm 3.0\%$ (s=2.0%), for the data shown in Fig. 1. That this is not a simple steric effect is shown in Fig. 2(a), where the compound with p-C₂H₅ is a better inhibitor than is the p-tolyl system. Increased fungal growth rates with pmethoxy-phenyltin compounds occur with all fungi except Asp. niger. In this case, as shown in Fig. 3(a), this type of compound has no effect at all on fungal growth rate, within the average experimental error of $\pm 3.7\%$ (s=2.8%). Pehraps even more surprising was the zero effect on growth, observed for all fungi, of the sterically demanding substituent, the t-butyl group (Fig. 3b), which is inconsistent with the activity of [p-(CH₃)₃CC₆H₄]₃SnCl against C. ulmi reported earlier. However our bioassay method differs from that used by Eng et al. and since all para-t-butyl aryltin compounds appear to have very low solubilities in many solvents, for our results may simply reflect the fact that the test compound, perhaps having precipitated out of the PDA medium during its preparation, would then not be available to the fungus.

Complete inhibition data, as ED₅₀ values, are in Table 3. Not unexpectedly, the effect of different X (OAc, OH, or 1/2O) on fungicidal activity is minimal and, in most cases, the


Table 2. Phytopathogenic and saprophytic fungi used in the bioassays

Fungus	Characteristics
Aspergillus niger	In temperate climates, this fungus generally acts as a secondary invader of plant tissue or as a saprophyte.
Botrytis cinera	Plant pathogenic fungus with a very wide host range; common on senescing or weakened tissue. Temperate crops affected: lettuce, bean, ginseng and strawberry.
Mucor hiemalis	Saprophytic fungus; common soil inhabitant.
Fusarium solani:	Pathogen of pea roots.
Penicillium chrysogenum	Saprophytic fungus; common soil inhabitant.

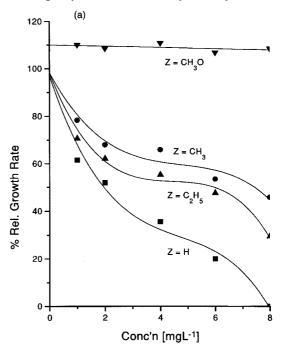
^c IR (cm⁻¹); Nujol mull (CDCl₃ soln).

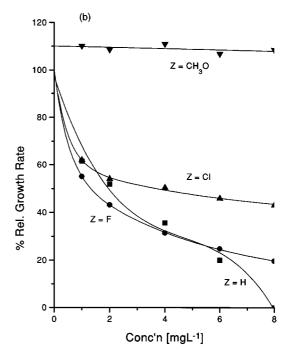
^d CDCl₃ solution; δ (¹¹⁹Sn) ppm (ext. Sn(CH₃)₄; nJ (Hz). Complete ¹³C NMR data are available from the authors.

^e Ref. 3. ^fRef. 19. ^gRef. 22. ^h Ref. 8. ⁱRef. 23.

Figure 1 Tin-119 chemical shifts for $(p\text{-}ZC_6H_4)_3$ SnOAc in CDCl₃ plotted against σ_p .

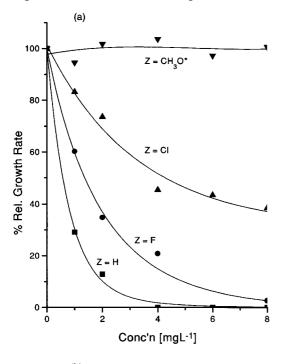
phenyltin compounds are still the most active. In general the relative effects due to *para*-substituent changes, including the zero activity noted above, are the same for all fungi.


DISCUSSION


The general mode of biological action of R_3SnX is considered by biochemists to be the same for all eukaryotic cells, with the ' R_3Sn ' group the active species at the site of the biochemical activity, i.e. in cell mitochondria. Most early studies involved triethyltin systems but more recently tributyltin species have been examined. Less work has been reported for the triphenyltin fungicides of interest here, but in fact the main features are deemed to be basically the same for all triorganotin systems.²⁹

Triorganotin compounds appear to inhibit mitochondrial function in three ways:³⁰ by (1) causing large-scale swelling at high concentrations, (2) mediating Cl^-/OH^- exchange across membranes, and (3) inhibiting oxidative phosphorylation or ATP hydrolysis, like oligomycin. The last process is usually assumed to be the most significant one although binding of Ph₃Sn⁺ to the cell wall was concluded to be responsible for the inhibition of C. ulmi;31 the triorganotinmediated anion exchange across mitochondrial membrane, which is electro-silent, i.e. involves neutral R₃SnX species, may also interfere with ATP synthesis or hydrolysis.

More recent studies³² have compared the


effects of venturicidin or R_3SnCl (R=Bu, Ph) with oligomycin and N,N'-dicyclohexylcarbodi-

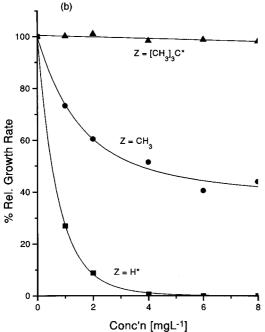


Figure 2 Relative growth rate plots showing the effect of $(p\text{-}ZC_6H_4)_3$ SnOAc on the growth of *Mucor hiemalis*. (a) Z=H, CH₃, C₂H₅, CH₃O; (b) Z=H, F, Cl, CH₃O.

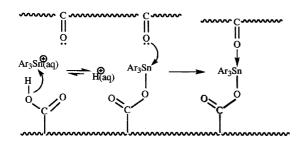
imide (DCDD) on oxidative phosphorylation using bovine submitochondrial particles (SMP).

Figure 3 Relative growth rate plots showing the effect of $(p\text{-}ZC_6H_4)_3\text{SnOH}$ or $[(p\text{-}ZC_6H_4)_3\text{Sn}]_2\text{O}^*$ on the growth of *Aspergillus niger.* (a) Z=H, F, Cl, CH₃O); (b) Z=H*, CH₃, (CH₃)₃C*.

The enzyme F-ATPase, the catalyst for ATP synthesis or hydrolysis, consists of two very complex units:33 F1, protruding into the mitochondrion and the catalytic sector of the ATP synthase complex; and F₀, consisting of sub-units a, b and c, bridging the membrane and responsible for the proton translocation connected with the above processes. All four inhibitors specified above, including R₃SnCl, act at F₀ with evidence that they all bind to at least one of the c subunits. In all ATP synthase complexes there is a free carboxyl group, from Asp or Glu residues, in subunit c that appears to be involved in transmembrane proton conduction by hydrogen bonding to amino-acids in subunit a. In addition, molecular flexibility of the subunits may be required for the rapid proton transfer needed for multisite ATP hydrolysis or synthesis, the process that is inhibited by R₃SnX. It was therefore suggested that organotins freeze the structure of F_0 so that the rapid proton transmembrane flow is disallowed but the slow proton transfer rate required for unisite processes is still permitted.³²

Our results indicate that the fungicidal activity of triaryltins correlates with their ability to attain a trans- C_3SnO_2 trigonal-bipyramidal geometry, while the ' $(p-CH_3OC_6H_4)_3Sn$ ' moiety, which is reluctant to do so, is completely ineffectual as a fungicide. This appears at first to contradict the earlier Mössbauer spectroscopic studies³⁰ that showed ' R_3Sn ' bound at the strong affinity sites in ATPase responsible for catalytic activity, to be four-coordinate or possibly cis five-coordinate. However, the Mössbauer studies were carried out on static frozen systems whereas, in contrast, our correlation is found for $in\ vivo$ dynamic systems involving fungal growth.

The scheme we propose for inhibition by triorganotins, and which can account for this apparent contradiction, is shown in Fig. 4. Penetration by the inhibitor as Ar₃Sn⁺(aq), or perhaps as Ar₃SnX since the environment is partly hydrophobic, of the neighbouring α helical peptide chains forming subunit c^{33} of the F₀ component of the ATP synthase complex occurs until the carboxylic acid residue is reached. Here the 'Ar₃Sn' moiety can now replace the proton, thus occupying a monodentate site with four-coordinate geometry consistent with the Mossbauer results obtained under static conditions. Moreover, when the enzyme is catalysing synthesis or hydrolysis of ATP under unisite conditions, the higher [H⁺(aq)] due to the proton gradient across the


Table 3. Radial growth inhibition data: ED₅₀^a values^b

(a) $(p-ZC_6H_4)_3$ Sno	oAc Z						
	Н	F	Cl	CH ₃	C_2H_5	CH ₃ O	
A. niger	2.0(0.1)	4.6(1.3)	8.2(2.3)	8(8)	2.4(1.6)	NE°	
B. cinera	5.2(2.6)	7(6)	6(4)	5.0(1.4)	1.7(1.4)	NE	
M. hiemalis	1.9(0.6)	1.4(0.1)	3.8(0.3)	7.6(4.4)	2.6(1.1)	NE	
F. solani	0.7(0.2)	2.4(1.0)	3.7(0.7)	3.8(1.5)	4.8(1.2)	NE	
P. chrysogenum	5.0(1.0)	14(10)	11(8)	11.7(3.8)	1.3(1.7)	NE	
(b) $(pZC_6H_4)_3SnOI$	Z	14/3511120					
	Н	F	Cl	CH ₃	H*	CH ₃ O*	(CH ₃) ₃ C*
A. niger	0.5(0.1)	1.4(0.3)	4.5(1.6)	4.3(1.6)	0.7(0.1)	NE	NE
B. cinera	5(4)	3.2(1.7)	5.0(3.3)	$6^{ m d}$	3(3)	NE	NE
M. hiemalis	1.5(0.4)	2.0(0.8)	2.0(0.7)	7(7)	1.4(0.2)	NE	NE
F. solani	1.1(0.2)	3.1(0.8)	5.3(2.5)	3.4(0.7)	0.9(0.1)	NE	NE
			g^{d}				

 $^{^{\}rm a}$ Concentration (mg l^{-1}) to decrease radial growth to 50% of that of the control.

membrane can displace part or most of the bound but labile tin, freeing the acidic residue and leaving the low proton flux then required little affected by the inhibitor.

However, the high rate of proton flow resulting from millimolar ATP reactions using the multisite pathway may require more extensive molecular motions in the F_0 unit which can result in a donor atom, e.g. from a carbonyl group in a neighbouring chain, approaching and coordinating with an already-bound Ar_3Sn moiety. In this way the F_0 unit acts as a giant chelate ligand, resulting in a *trans*- C_3SnO_2 trigonal-bipyramidal geometry around the tin, perhaps more like that found in the solid state for both triphenyltin acetate²⁵ and triphenyltin formate³⁴ rather than

Figure 4 Scheme proposed for organotin inhibition of proton transfer through the E_0 part of the F-ATPase enzyme.

would be the case in solution for the much weaker interaction between an O-donor ligand and an $Ar_3SnOOCR$ unit. The tin would now occupy a strong binding site in the enzyme and this effectively irreversible change would thus enable the triorganotin moiety to freeze the F_0 unit in a state that would disallow rapid proton conduction and therefore indirectly inhibit the multisite mechanism, while leaving the unisite one unaffected as was suggested before.

Two more pieces of evidence further support our proposal that it is the ability of the inhibitor to occupy a site requiring a *trans*-C₃SnO₂ trigonal-bipyramidal geometry around tin rather than the stoichiometry of the 'R₃M (M=Si-Pb) chemical unit itself, that is responsible for the fungicidal action of these compounds.

- (a) More than 30 years ago it was found that R₃GeX compounds were ineffective as fungicides when compared with their tin and lead analogues.³⁵ Four-coordinate R₃GeX compunds are well known but *trans*-bidentate five-coordinate 'R₃Ge' systems are very rare indeed.
- (b) More recently $Bu_2Sn(of)Br$ (Hof=3-hydroxyflavone) has been used as a fluorescent probe of the F_1F_0 -ATPase complex in both the membrane-bound and solubilized form. ^{36, 37} It is an effective

^b Errors are given in parentheses. ^c NE, no effect. ^dError greater than ED₅₀ value.

inhibitor of the enzyme activity but it is completely displaced by Bu_3SnCl . This suggests that the Bu_2SnCl (of) Br binding site is in F_0 and is the same as that for Bu_3SnCl . This would then imply that the $[Bu_2Sn(of)]^+$ ion, which can easily survive under the conditions of the study, is able to achieve the same *trans*-bidentate penta coordination as the Bu_3Sn^+ ion itself. This will not be the case for the Bu_2Sn^{2+} moiety derived from Bu_2SnBr_2 , and the latter compound indeed does not displace $Bu_2Sn(of)Br$ from its F_0 binding sites.

Acknowledgements The support of the Fonds FCAR (Programmes ACSAIR, Actions spontanées) of the Gouvernment du Québec is most gratefully acknowledged, as is the assistance of the Department of Chemistry, McGill University, where much of this work was carried out. The administration of Dawson College is thanked for supporting this research with release time (I.W.).

REFERENCES

- C. J. Evans and S. Karpel, J. Organomet. Chem. Libr. 16, 178, 258 (1985).
- 2. R. Bock, Residue Rev. 7, 1 (1981).
- S. Chandra, S. Gioskos, B. D. James, B. J. Macauley and R. J. Magee, J. Chem. Technol. Biotechnol. 56, 41 (1993).
- D. Dutrecq, R. Willem, M. Biesemans, M. Bouâlam, A. Merem and M. Gielen, *Main Group Metal Chem.* 15, 285 (1992), and refs therein.
- V. G. Kumar Das, A. J. Kuthubetheen, S. Balabaskaran and S. W. Ng, *Main Group Metal Chem.* 12, 389 (1989).
- C. R. McDonough, O. J. Taylor and J. L. Wardell, Appl. Organomet. Chem. 3, 417 (1989).
- G. J. M. van der Kerk and J. G. A. Luijten, *J. Appl. Chem.* 4, 314 (1954).
- J. G. A. Luijten and G. J. M. van der Kerk, *J. Appl. Chem.* 11, 35 (1961).
- T. N. Srivastava, S. N. Bhattacharya, S. K. Tandon, J. Dasgupta, B. J. Jaffri and O. P. Srivastava, *Indian J. Microbiol.* 8, 65 (1968).
- V. G. Kumar Das, L. Y. Kuan, K. I. Sudderuddin, C. K. Chang, V. Thomas, C. K. Yap, M. K. Lo, G. C. Ong, W. K. Ng and Y. Hoi-Sen, *Toxicology* 32, 57 (1984).
- S. Balabaskaran, K. Tilikavati and V. G. Kumar Das, Appl. Organomet. Chem. 1, 347 (1987).
- A. J. Kuthubetheen, R. Wickneswari and V. G. Kumar Das, Appl. Organomet. Chem. 3, 231, 243 (1989).

- G. Eng, Y. Z. Zhang, D. Whalen, R. Ramsammy, L. E. Khoo and M. DeRosa, *Appl. Organomet. Chem.* 8, 445 (1994).
- 14. I. Wharf, Can. J. Spectrosc. 31, 27 (1986).
- 15. I. Wharf, Inorg. Chim Acta 159, 41 (1989).
- 16. I. Wharf, M. G. Simard and K. McGinn, *Acta Crystallogr. Part C* **51**, 236 (1995).
- 17. O. K. Dhingra in: *Basic Plant Pathology Methods*, 2nd edn, CRC Press, Boca Raton, USA (1995); D. H. Griffin in: *Fungal Physiology*, 2nd edn, Wiley–Liss, New York, 1994.
- T. N. Srivastava and J. Singh, *Indian J. Chem.* 22A, 128, 674 (1983).
- 19. G. J. M. van der Kerk and J. G. A. Luijten, *J. Appl. Chem.* **6**, 49 (1956).
- B. Kushlefsky, I. Simmons and A. Ross, *Inorg. Chem.* 2, 187 (1963).
- I. Wharf and M. G. Simard, *Appl. Organomet. Chem.* 6, 49 (1992).
- 22. E. J. Kupchik and E. F. McInerney, *J. Organomet. Chem.* **11**, 291 (1968).
- D. J. Finney in: Probit Analyses: A Statistical Treatment of the Sigmoid Response Curve, 3rd edn, Cambridge University Press, Cambridge, UK, 1971.
- G. B. Deacon and R. J. Phillips, Coord. Chem. Rev. 33, 227 (1980).
- K. C. Molloy, T. G. Purcell, K. Quill and I. W. Nowell, J. Organomet. Chem. 267, 237 (1984).
- J. M. Brown, A. C. Chapman, R. Harper, D. J. Mowthorpe, A. G. Davies and P. J. Smith, *J. Chem. Soc., Dalton Trans.* 338 (1972).
- 27. W. Bueno, Spectrochim. Acta. 36A, 1059 (1980).
- 28. C. Glidewell and D. C. Liles, *Acta Crystallogr. Part B* **34**, 129 (1978).
- M. J. Selwyn in: *Chemistry of Tin*, Harrison, P. G. (ed.), Blackie, Glasgow, 1989, pp. 367–385, and references therein.
- W. N. Aldridge, B. W. Street and J. G. Noltes, *Chem. Biol. Interact.* 34, 223 (1981).
- L. May, G. Eng, S. P. Coddington and L. L. Stockton, *Hyperfine Interact.* 42, 909 (1988).
- A. Matsuno-Yagi and Y. Hatefi, J. Biol. Chem. 268, 1539, 6168 (1993), and references therein.
- 33. W. A. Cramer and D. B. Knaff in: *Energy Transduction in Biological Membranes*, Springer-Verlag, New York, pp. 355–405, and references therein.
- K. C. Molloy, K. Quill and I. W. Nowell, *J. Chem. Soc.*, Dalton Trans. 101 (1987).
- A. K. Sijpesteijn, F. Rijkens, J. G. A. Luijten and L. C. Willemsens, *Antonie van Leeuwenhoek, J. Microbiol. Serol.* 28, 346 (1962).
- J. Usta and D. E. Griffiths, *Appl. Organomet. Chem.* 7, 193 (1993).
- 37. D. E. Griffiths, J. Usta and Y. M. Tian, Appl. Organomet. Chem. 7, 401 (1993).