Synthesis, Characterization and Biological Activities of Some Triarylantimony Dichrysanthemates and Crystal Structure of Ph₃Sb(O₂CCHCMe₂CMe₂)₂

Jin-Shan Li,* Gui-Qin Huang, Yun-Ting Wei, Chuan-Hui Xiong, Dong-Qiang Zhu and Oing-Lan Xie

Institute of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China

A series of triarylantimony dichrysanthemate compounds of the type $Ar_3Sb(O_2CR)_2$ [$Ar = C_6H_5$, 4- $CH_3C_6H_4$, 3- $CH_3C_6H_4$, 2- $CH_3C_6H_4$, 4- ClC_6H_4 ; $R = 4-ClC_6H_4CH(i-Pr)$, CMe_2CMe_2CH , cis- Cl_2C : $CHCHCMe_2CH$, trans-Cl₂C:CHCHCMe₂CH] have been synthesized and characterized by elemental analysis, infrared spectra, ¹H NMR spectra and mass spectra. Some activities of these compounds in plant growth regulation have been determined. Their results indicate that the derivatives of cis-dichlorochrysanthemic acid and trans-dichlorochrysanthemic acid significantly promote rooting of excised cucumber cotyledons at 10 ppm. An X ray structure determination has been carried out as follows for Ph₃Sb(O₂CCHCMe₂CMe₂)₂: orthorhombic, space group Pbcn, Z=4, structure solution with **2385** independent reflections, R=0.035. Lattice dimensions at 26 °C: a = 15.616(3) Å,b = 10.275(2) Å, $V = 3241(2) \text{ Å}^3$ c = 20.201(5) Å, $\rho = 1.302 \text{ g cm}^{-3}$. © 1997 John Wiley & Sons,

Appl. Organometal. Chem. 11, 31-38 (1998)

Keywords: triarylantimony dichrysanthemate; plant growth-regulating activity; crystal structure

Received 16 April 1997; accepted 4 July 1997

Contract grant sponsor: Institute of Elemento-Organic Chemistry

INTRODUCTION

Triorganoantimony dicarboxylates of the type R₃Sb(O₂CR')₂ have been known for a long time. 1-18 Their structures have been studied with the help of vibrational spectroscopy^{4, 5, 13, 14, 19} and X-ray diffraction.^{20–24} The biological activity of some triorganoantimony dicarboxylates has been reported. 11, 18 Bajpai and co-workers 11 considered that the activity was not significantly affected by the nature of the R or R' group. However, Singhal and co-workers¹⁸ found that the effect of the nature of the R or R' group on the activity was relatively complex. In order to go further into the influence of the I-effect of the organic ligands R at Sb as well as the steric effect of the R or R'-group on the structure and the biological activity of R₃Sb(O₂CR')₂, we have synthesized a series of triarylantimony dichrysanthemates which contain two active centers, namely the triarylantimony(V) moiety and the chrysanthemate group.

EXPERIMENTAL

Elemental analyses were determined on a Yanaco CHN Corder MT-3 elemental analyzer. IR spectra in the region 4000–400 cm⁻¹ were recorded in KBr disks on a Nicolet 5DX FT-IR spectrophotometer. ¹H NMR spectra were measured on a Bruker Ac-200 spectrometer in CDCl₃ solution with TMS as internal standard. Mass spectra were recorded on a VG ZAB-HS at 70 eV; the temperature of ionization was 200 °C.

[†] Correspondence to: Jin-Shan Li, Institute of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.

General method of preparation of triarylantimony dibromides

Triarylantimony was prepared by the method reported by De Ketellaere et~al., wising freshly distilled analytically pure-grade antimony trichloride and a Grignard reagent from dried redistilled ArX (X=Cl, Br) and magnesium turnings in sodium-dried ether, and was subsequently converted into the corresponding dibromide by direct bromination. The solid product was recrystallized from toluene–petroleum ether (b. pt 60–90 °C) mixtures. A white crystalline solid, Ar₃SbBr₂ (Ar=C₆H₅, 4-CH₃C₆H₄, 3-CH₃C₆H₄, 2-CH₃C₆H₄, 4-ClC₆H₄), was obtained.

General method of preparation of triarylantimony dichrysanthemates

Triarylantimony dichrysanthemates were prepared by a more convenient method.¹¹ Recrystallized chrysanthemic acids (3 mmol) and potassium hydroxide (3 mmol) or triethylamine (1.5 ml) were stirred together in toluene (30 ml) at room temperature for 4 h, then triarylantimony dibromide (1.5 mmol) was added. The reaction mixture was stirred at room temperature for 6–8 h and filtered. The filtrate was evaporated to dryness by a rotary evaporator *in vacuo* to afford triarylantimony dichrysanthe-

mates which were recrystallized from benzene-petroleum ether $(60-90\,^{\circ}\text{C})$ mixtures. Some data on the compounds are listed in Table 1.

Plant growth-regulating tests

The plant growth-regulating tests were carried out by the method reported by Zhao and Huang.²⁷ The concentrations of the aqueous solutions of 15 representative compounds were 10 ppm. For each compound being tested, 3 ml of its solution was placed by syringe in a Petri dish. Then 10 excised cucumber cotyledons were selected and put into the Petri dish. Finally the Petri dish was placed in a darkroom at 26 °C for five days. The number of roots on the 10 cotyledons was determined. Every test was repeated four times. Distilled water was used as the control and indole-3-acetic acid (10 ppm aqueous solution) was used for comparison.

RESULTS AND DISCUSSION

The reactions of triarylantimony dibromides with chrysanthemic acids in the presence of a base (potassium hydroxide or triethylamine) afford a

 $\textbf{Table 1} \quad \text{Yields and elemental analyses of the compounds} \\$

				Elemental analysis: Found (calcd) (%)		
Compd	Yield (%)	State	M.pt (°C)	С	Н	Formula for calculation
1	63	White crystals	158-159	64.40 (64.27)	6.49 (6.52)	C ₃₄ H ₄₁ O ₄ Sb
2	69	White crystals	157-159	65.05 (65.59)	6.67 (6.99)	$C_{37}H_{47}O_4Sb$
3	69	White crystals	110-111	65.52 (65.59)	6.86 (6.99)	$C_{37}H_{47}O_4Sb$
4	72	White crystals	174 - 177	65.42 (65.59)	7.17 (6.99)	$C_{37}H_{47}O_4Sb$
5	62	White crystals	159-161	55.07 (55.28)	5.37 (5.18)	$C_{34}H_{38}Cl_3O_4Sb$
6	65	White crystals	130-131	53.04 (53.09)	4.92 (4.32)	$C_{34}H_{33}Cl_4O_4Sb$
7	80	White crystals	39-42	54.70 (54.78)	5.02(4.85)	$C_{37}H_{39}Cl_4O_4Sb$
8	82	White crystals	42 - 46	54.78 (54.78)	4.46 (4.85)	$C_{37}H_{39}Cl_4O_4Sb$
9	58	White crystals	46-50	46.60 (46.80)	3.83 (3.47)	$C_{34}H_{30}Cl_7O_4Sb$
10	95	White crystals	38-42	52.96 (53.09)	4.40 (4.32)	$C_{34}H_{33}Cl_4O_4Sb$
11	68	White crystals	39 - 42	54.32 (54.78)	4.57 (4.85)	$C_{37}H_{39}Cl_4O_4Sb$
12	74	Yellow adhesive oil		55.22 (54.78)	4.57 (4.85)	$C_{37}H_{39}Cl_4O_4Sb$
13	82	Yellow adhesive oil		53.80 (54.78)	5.72 (4.85)	$C_{37}H_{39}Cl_4O_4Sb$
14	69	White crystals	44 - 48	47.12 (46.80)	3.94 (3.47)	$C_{34}H_{30}Cl_7O_4Sb$
15	77	White crystals	116-118	61.85 (61.88)	5.08 (5.06)	$C_{40}H_{39}Cl_2O_4Sb$
16	73	White crystals	120 - 122	63.03 (63.10)	5.60 (5.54)	$C_{43}H_{45}Cl_2O_4Sb$
17	73	White crystals	48 - 52	61.60 (63.10)	6.01 (5.54)	$C_{43}H_{45}Cl_2O_4Sb$
18	82	White crystals	155-157	54.84 (54.61)	4.42 (4.12)	$C_{40}H_{36}Cl_5O_4Sb$

series of triarylantimony dichrysanthemates (Eqn [1]):

$$\begin{array}{c} Ar_3SbBr_2 + 2RCO_2H {\longrightarrow} Ar_3Sb(O_2CR)_2 & [1] \\ R = \overline{CMe_2CMe_2}CH; \ Ar = C_6H_5 \ (1), \ 4\text{-}CH_3C_6H_4 \ (2), \ 3\text{-}CH_3C_6H_4 \ (3), \\ 2\text{-}CH_3C_6H_4 \ (4), \ 4\text{-}ClC_6H_4 \ (5) \\ R = \mathit{cis}\text{-}Cl_2C:CHCHCMe_2CH; \ Ar = C_6H_5 \ (6), \ 4\text{-}CH_3C_6H_4 \ (7), \\ 2\text{-}CH_3C_6H_4 \ (8), \ 4\text{-}ClC_6H_4 \ (9) \\ R = \mathit{trans}\text{-}Cl_2C:CHCHCMe_2CH; \ Ar = C_6H_5 \ (10), \ 4\text{-}CH_3C_6H_4 \ (11), \\ 3\text{-}CH_3C_6H_4 \ (12), \ 2\text{-}CH_3C_6H_4 \ (13), \ 4\text{-}ClC_6H_4 \ (14) \\ R = 4\text{-}ClC_6H_4CH(i\text{-}Pr); \ Ar = C_6H_5 \ (15), \ 4\text{-}CH_3C_6H_4 \ (16), \ 2\text{-}CH_3C_6H_4 \ (17), \ 4\text{-}ClC_6H_4 \ (18) \\ \end{array}$$

The reactions proceed under mild conditions and the yields are generally high (58–95%). Most of the compounds are white crystals (only compounds 12 and 13 are yellow adhesive oils). They are unaffected by atmospheric moisture. They are easily soluble in various organic solvents, e.g. benzene, toluene, petroleum ether, ethanol, acetone or chloroform.

In the majority of organoantimony(V) compounds the antimony has generally a coordination number of five. Because the vacant 5d orbital of the antimony atom can accept lone electron pairs of ligands, in some cases the antimony may have a formal coordination number of $six^{28,29}$ or seven. 24 For many organoantimony carboxylates there are interactions between the carbonyl oxygen atoms of the carboxylate groups and the antimony atom, 20, 24, 28, 29 but for some organoantimony carboxylates there is no interaction between the carbonyl oxygen atoms of the carboxylate groups and the antimony atom.²⁴ The IR stretching vibration frequencies of carboxylate groups in organoantimony carboxylates are very important for determining their structures: when there are interactions between the carbonyl oxygen atoms of the carboxylate groups and the antimony atom, the asymmetric absorption vibration frequencies $[\nu_{as}(CO_2)]$ of the carboxylate groups decrease and the symmetric absorption vibration frequencies [$\nu_s(CO_2)$] increase. Their difference $[\Delta v(CO_2)]$ therefore decreases.4, 18, 30 In the IR spectra of the title compounds the carboxylate bands are observed in the characteristic regions: $\nu_{as}(CO_2)$ between 1660 and 1565 cm⁻¹ and $\nu_{\rm s}({\rm CO_2})$ between 1381 and 1331 cm⁻ (Table 2). On the basis of the difference $\Delta \nu(CO_2)$ these compounds can be divided in two classes: the compounds 2, 4, 8, 12, 13, 15 and 17 show high $\Delta \nu$ values (between 291 and 328 cm⁻¹), while all other compounds show $\Delta \nu$ values between 216 and 280 cm⁻¹ (Table 2). We can assume that the compounds 3, 5, 6, 7, 9, 10, 11, 14, 16 and 18 are analogous to compound 1, in which there are interactions between the carbonyl oxygen atoms of the carboxylate groups and the antimony atom (see the crystal structure of 1), while in all other com-

Table 2 IR data of the compounds (cm⁻¹)

Compound	$\nu_{\rm as}({ m CO}_2)$	$\nu_{\rm s}({ m CO}_2)$	$\Delta \nu ({ m CO}_2)$	$\nu_{\rm as}({ m Sb-C[Ph]})$
1	1625	1346	278	460
2	1638	1335	303	483
3	1622	1342	280	446
4	1659	1331	328	486
5	1565	1349	216	488
6	1627	1364	263	458
7	1625	1372	253	483
8	1657	1360	297	485
9	1605	1380	225	487
10	1628	1348	280	454
11	1631	1357	274	485
12	1636	1344	292	476
13	1650	1338	312	485
14	1608	1381	227	487
15	1639	1348	291	456
16	1635	1359	276	485
17	1660	1340	320	460
18	1634	1358	276	486

pounds there are weaker interactions or no interaction between the carbonyl oxygen atoms of the carboxylate groups and the antimony atom. As contrasted with the +I effect of alkyl groups, the -I effect of the aryl groups enhances the Lewis acidity of Sb and leads to a stronger $Sb \cdots O = C$ coordination.²⁴ When Ar is 4-ClC₆H₄, the difference $\Delta \nu$ (CO₂) is relatively low; this means a relatively strong Sb · · · O=C coordination. When Ar is $CH_3C_6H_4$, the difference $\Delta\nu(CO_2)$ is relatively high; this means a relatively weak $Sb \cdot \cdot \cdot O = C$ coordination, or none. The former may be attributed to the -I effect of Cl, and the latter may be attributed to the +I effect of the methyl group. When Ar is 2-CH₃C₆H₄, the difference $\Delta \nu$ (CO₂) is very high; this may be attributed to the steric effect of the *ortho*-methyl group which weakens the Sb–C(Ph) bond and decreases the capacity of the antimony atom to accept lone electron pairs from the carbonyl oxygen atoms. In addition, the frequencies $\nu_{as}(Sb-$ C[Ph]) appear between 446 and 488 cm⁻¹; this is consistent with the literature [4].

The ¹H NMR spectra of the compound **1** has shown a multiplet at 7.41–7.90 ppm (due to Ph) and three singlets at 1.04 ppm (due to CH), 1.00 ppm (due to CH₃, in the *cis*-position) and 0.95 ppm (due to CH₃ in the *trans*-position) with an intensity ratio of 15:2:12:12 which suggests that both the chrysanthemate groups are equivalent. The ¹H NMR data of other compounds are listed in Table 3.

The mass spectra (MS) of compounds 1 and 6 are recorded and the main data are listed in Table 4. For both there is no molecular ion peak. Decarboxylation

and dephenylation from the antimony atom are the two main breakdown patterns for the two compounds.

The data for plant growth-regulating activity of triarylantimony dichrysanthemates are listed in Table

5. Faucher³¹ reported that *cis/trans*-2-(*N*,*N*,*N*-trimethylamino)ethyl chrysanthemate chloride caused stunting in corn, milo and cotton plants. Crammer and co-workers³² reported that the products derived from *cis/trans*-chrysanthemic acid displayed potent inhibi-

Table 3 ¹H NMR data for compounds Ar₃Sb(O₂CR)₂ (ppm)

Com	pound	Ar ₃ Sb(O ₂ CCl	HCMe ₂ CN	$(1e_2)_2$				
	_	CH ₃				СН		Ar
1 2 3		0.95 (12H, s) 0.95 (12H, s) 0.97 (12H, s)	, 1.00 (12	H, s)		1.04 (2H 1.02 (2H 1.07 (2H	I, s)	7.41–7.90 (15H, m) 7.20–7.82 (12H, m), 2.35 (9H, s) 7.27–7.80 (12H, m), 2.34 (9H, s)
4 5		0.85 (12H, s) 0.98 (12H, s)	, 0.97 (12	H, s)		1.10 (2H 1.09 (2H	H, s)	7.33–8.27 (12H, m), 2.52 (9H, s) 7.36–7.82 (12H, m)
	Ar ₃ Sb(O ₂ CCH	CMe₂CHCH:0	$CCl_2)_2$					
	CH ₃		O ₂ CCH		C:CCH		Cl ₂ C:CH	Ar
5	0.93 (6H, s), 1.	.07 (6H, s)	1.70 (2H	(, d)	1.75 (2I	H, m)	6.08 (2H, d)	7.47–7.93 (15H, m)
7	0.98 (6H, s), 1.	.08 (6H, s)	1.28 (2H	, d)	1.70 (2H	ł, m)	6.06 (2H, d)	7.28–7.88 (12H, m), 2.40 (9H, s)
3	0.98 (6H, s), 1.	.03 (6H, s)	1.57 (2H	, d)	1.70 (2H	I, m)	5.96 (2H, d)	7.33–8.25 (12H, m), 2.51 (9H, s)
)	0.96 (6H, s), 1.	.08 (6H, s)	1.66 (2H	, d)	1.86 (2H	ł, m)	6.02 (2H, d)	7.42–7.82 (12H, m)
)	0.83 (6H, s), 1.	.00 (6H, s)	1.38 (2H	(, d)	2.00 (2H	ł, m)	5.47 (2H, d)	7.46–7.95 (15H, m)
	0.90 (6H, s), 1	.01 (6H, s)	1.40 (2H	(, d)	1.98 (2H	ł, m)	5.49 (2H, d)	7.26–7.86 (12H, m), 2.37 (9H, s)
2	0.88 (6H, s), 1	. , ,	1.42 (2H	(, d)	2.04 (2H	ł, m)	5.48 (2H, d)	7.28–7.76 (12H, m), 2.36 (9H, s)
3	0.80 (6H, s), 0	.93 (6H, s)	1.30 (2H		1.86 (2H		5.41 (2H, d)	
,	0.86 (6H, s), 1	.02 (6H, s)	1.29 (2H	(, d)	2.02 (2H	ł, m)	5.52 (2H, d)	7.40–7.83 (12H, m)
	Ar ₃ Sb[O ₂ CCH	H(i-Pr)C ₆ H ₄ Cl	-4] ₂					
	CH ₃	СН	(O ₂ CCH		C_6H_4		Ar
5	0.60 (12H, d)	2.09 (2H	, m) 2	2.91 (21	H, d)	6.95-7	7.07 (8H, m)	7.30–7.65 (15H, m)
6	0.65 (12H, d)	2.10 (2H	, m) 2	2.92 (21	H, d)	6.96-7	7.05 (8H, m)	7.05–7.53 (12H, m), 2.33 (9H, s)
7	0.58 (12H, d)	2.02 (2H	, m) 2	2.77 (21	H, d)	6.82 - 7	7.00 (8H, m)	7.22–7.92 (12H, m), 2.19 (9H, s)
8	0.61 (12H, d)	2.12 (2H	. m) 2	2.92 (21	H. d)	6.90-7	7.04 (8H, m)	7.23–7.55 (12H, m)

Table 4 Fragment ions observed for compounds 1 and 6

Compound 1			Compound 6			
m/z	Fragment ion	Intensity	m/z	Fragment ion	intensity	
557	[Ph ₂ Sb(O ₂ CCHCMe ₂ CMe ₂) ₂] ⁺	11.3	691	[Ph ₂ Sb(O ₂ CCHCMe ₂ CHCH:CCl ₂) ₂] ⁺	4.1	
493	[Ph ₃ Sb(O ₂ CCHCMe ₂ CMe ₂)] ⁺	100.0	561	[Ph ₃ Sb(O ₂ CCHCMe ₂ CHCH:CCl ₂)] ⁺	100.0	
352	Ph ₃ Sb ⁺	2.0	352	Ph ₃ Sb ⁺	9.5	
275	Ph ₂ Sb ⁺	9.3	275	Ph ₂ Sb ⁺	4.6	
198	PhSb ⁺	26.5	198	PhSb ⁺	91.0	
121	Sb^+	1.2	121	Sb^+	5.3	
77	Ph^+	7.8	77	Ph ⁺	61.0	

tory effects on root elongation and lettuce seed germination at 10^{-4} and 10^{-5} M concentrations. From Table 5 we can see that compounds **4**, **5** and **15–18** inhibit rooting of excised cucumber cotyledons and **6–12** as well as **14** significantly promote rooting of excised cucumber cotyledons at 10 ppm concentra-

Table 5 Effect of triarylantimony dichrysanthemates on rooting of excised cucumber cotyledon (26 °C, in the dark)

Compound	Number of roots	Percentage over
(10 ppm)	on 10 cotyledons	control (%)
3	9.0 ± 2.0	0.0
4	7.0 ± 1.0	-22.2
5	7.3 ± 1.5	-18.9
6	20.0 ± 2.0	122.2
7	16.3 ± 1.5	81.1
8	13.4 ± 1.6	48.9
9	21.3 ± 3.1	136.7
10	20.0 ± 3.5	122.2
11	14.0 ± 1.0	55.6
12	16.0 ± 5.6	77.8
14	16.7 ± 2.9	85.6
15	6.3 ± 3.1	-30.0
16	5.7 ± 2.9	-36.7
17	4.3 ± 0.6	-52.2
18	2.7 ± 1.2	-70.0
Distilled water	9.0 ± 1.4	
IAA ^a	24.4 ± 2.6	171.1

^a IAA, Indole-3-acetic acid.

tion. The activity of compounds 6, 9 and 10 is relatively high and approaching the activity of indole-3-acetic acid. The data in Table 5 indicate that the activity of triarylantimony dichrysanthemates is significantly affected by the nature of the aryl and

Table 6 Bond distances of compound 1 (Å)

Sb-O(1)	2.106(3)
Sb-O(2)	2.800(2)
Sb-C(11)	2.123(5)
Sb-C(21)	2.1898(5)
O(1)-C(1)	1.301(6)
O(2)-C(1)	1.229(6)
C(1)-C(2)	1.495(7)
C(2)-C(3)	1.547(8)
C(2)-C(4)	1.549(8)
C(3)–C(4)	1.523(9)
C(3)–C(7)	1.545(9)
C(3)-C(8)	1.523(9)
C(4)-C(5)	1.538(9)
C(4)-C(6)	1.53(1)
C(11)-C(12)	1.363(8)
C(11)-C(16)	1.398(9)
C(12)-C(13)	1.416(8)
C(13)-C(14)	1.38(1)
C(14)-C(15)	1.37(1)
C(15)-C(16)	1.417(9)
C(21)-C(22)	1.372(6)
C(22)-C(23)	1.407(8)
C(23)-C(24)	1.408(8)

Table 7 Bond angles (°) of compound 1^a

O(1)-Sb-O(1a)	177.6(2)	C(4)-C(3)-C(8)	121.8(6)
O(1)-Sb-O(2)	51.0(1)	C(7)-C(3)-C(8)	112.4(6)
O(1)-Sb- $O(2a)$	131.3(2)	C(2)-C(4)-C(3)	60.5(4)
O(2)-Sb- $O(2a)$	80.8(2)	C(2)-C(4)-C(5)	119.0(5)
O(1)-Sb- $C(11)$	92.1(2)	C(2)-C(4)-C(6)	113.7(7)
O(1)-Sb-C(11a)	88.7(2)	C(3)-C(4)-C(5)	119.4(6)
O(1)-Sb- $C(21)$	88.9(2)	C(3)-C(4)-C(6)	119.6(6)
C(11)-Sb- $C(11a)$	150.0(3)	C(5)-C(4)-C(6)	114.0(6)
C(11)-Sb- $C(21)$	105.1(2)	Sb-C(11)-C(12)	114.7(4)
C(11a)-Sb-C(21)	105.1(2)	Sb-C(11)-C(16)	122.8(5)
Sb-O(1)-C(1)	109.4(3)	C(12)-C(11)-C(16)	122.6(6)
O(1)-C(1)-O(2)	121.1(5)	C(11)-C(12)-C(13)	119.2(7)
O(1)-C(1)-C(2)	113.0(6)	C(12)-C(13)-C(14)	120.1(8)
O(2)-C(1)-C(2)	125.8(6)	C(13)-C(14)-C(15)	119.6(7)
C(1)-C(2)-C(3)	120.4(5)	C(14)-C(15)-C(16)	122.1(7)
C(1)-C(2)-C(4)	121.3(5)	C(11)-C(16)-C(15)	116.5(7)
C(3)-C(2)-C(4)	59.0(4)	Sb-C(21)-C(22)	116.8(3)
C(2)-C(3)-C(4)	60.6(4)	Sb-C(21)-C(22a)	116.8(3)
C(2)-C(3)-C(7)	111.8(6)	C(22)-C(21)-C(22a)	126.4(5)
C(2)-C(3)-C(8)	122.1(5)	C(21)-C(22)-C(23)	116.8(6)
C(4)-C(3)-C(7)	118.6(6)	C(22)-C(23)-C(24)	119.5(7)
() () - ()		C(23)-C(24)-C(23a)	121.0(8)
		. , . , . ,	` ,

^a Symmetry operation: a=1-x, y, 0.5-z.

chrysanthemate groups.

A colorless crystal of compound 1 was obtained from benzene–petroleum ether (60–90 °C) mixtures and was determined using MoK α radiation (λ =0.71073 Å) on an Enraf–Nonius CAD4 four-circle diffractometer. The structure of 1 was solved by means of direct methods using the SDP-PLUS program system. The crystallographic parameters and conditions of data collection are summarized as follows:

 $C_{34}H_{41}O_{4}Sb$

Crystal data: orthorhombic, space group Pbcn,

Table 8 Least-squares planes and dihedral angle (°)

Atom	х	у	z	Distance±ESD		
Orthonormal equation of plane 1: $0.9006x - 0.0000y - 0.4346z - 4.8378 = 0$						
O(1)	8.6449		6.9820	-0.0859 ± 0.0057		
O(2)	8.6851	-1.7540		0.0997 ± 0.0069		
O(2a)	6.9312			-0.0997 ± 0.0000		
O(1a)	6.9714			0.0859 ± 0.0000		
C(21)	7.8082			0.0000 ± 0.0000		
Sb	7.8082	0.3789		0.0000 ± 0.0000		
C(11)	5.9024	-0.1708		-2.0452 ± 0.0086		
C(11a)	9.7139		4.2934	2.0452 ± 0.0000		
		tion of plan		114 0		
		678y - 0.08				
C(11)	5.9024	-0.1708		-0.0028 ± 0.0089		
C(12)	4.8812					
C(13)	3.5660					
C(14)	3.3306			-0.0014 ± 0.0129		
C(15)	4.3784			-0.0025 ± 0.0134		
C(16)	5.7059	-1.2905	6.6204	0.0045 ± 0.0119		
		tion of plan		- 0.42 (A)		
				+5.042(2)=0		
C(11a)	9.7139	-0.1708		0.0028 ± 0.0000		
C(12a)		0.6455		0.0011 ± 0.0000		
C(13a)				-0.0032 ± 0.0000		
C(14a)		-0.7291	3.4229	0.0014 ± 0.0000		
C(15a)	11.2379		3.0509	0.0025 ± 0.0000		
C(16a)	9.9104	-1.2905	3.4800	-0.0045 ± 0.0000		
		tion of plar				
		00(2)y - 0.3				
C(21)	7.8082	2.5687		0.0000 ± 0.000		
C(22)	8.2787	3.1867	6.1808	-0.0005 ± 0.0096		
C(23)	8.2795	4.5933	6.1802	0.0005 ± 0.0108		
C(24)	7.8082	5.2867	5.0502	0.0000 ± 0.0000		
C(22a)		3.1867	3.9196	0.0005 ± 0.0000		
C(23a)	7.3368	4.5933	3.9202	-0.0005 ± 0.0000		
Plane no	o. P	lane no.	Dihe	edral angle (°)		
1	2		77.5	6 ± 0.27		
2	3		69.19	9 ± 0.21		
2	4		80.12 ± 0.30			
3	4		80.12 ± 0.14			

 Table 9
 Fractional coordinates and thermal parameters of non-hydrogen atoms for compound 1

Atom	х	у	z	$B_{\rm eq}({\rm \AA}^2)$
Sb	0.500	0.03688(7)	0.250	3.31(1)
O(1)	0.5536(4)	0.0411(6)	0.3456(3)	4.1(1)
O(2)	0.5562(5)	-0.1707(6)	0.3286(3)	5.5(2)
C(1)	0.5744(6)	-0.0765(9)	0.3633(4)	4.2(2)
C(2)	0.6225(6)	-0.0809(9)	0.4273(4)	4.3(2)
C(3)	0.6113(7)	-0.197(1)	0.4750(5)	5.5(3)
C(4)	0.6959(6)	-0.180(1)	0.4387(5)	5.8(3)
C(5)	0.7198(8)	-0.274(1)	0.3827(6)	8.0(3)
C(6)	0.7729(7)	-0.123(1)	0.4752(6)	9.2(4)
C(7)	0.6051(9)	-0.152(2)	0.5479(5)	8.9(4)
C(8)	0.5511(8)	-0.310(1)	0.4598(6)	7.6(3)
C(11)	0.3780(6)	-0.0166(9)	0.2875(4)	4.2(2)
C(12)	0.3126(6)	0.063(1)	0.2685(5)	6.9(3)
C(13)	0.2284(7)	0.035(1)	0.2903(6)	8.0(3)
C(14)	0.2133(7)	-0.071(1)	0.3306(6)	8.0(4)
C(15)	0.2804(8)	-0.150(1)	0.3490(7)	8.6(4)
C(16)	0.3654(7)	-0.126(1)	0.3277(6)	7.0(3)
C(21)	0.500	0.250	0.250	4.1(2)
C(22)	0.5301(6)	0.3101(9)	0.3060(5)	5.4(3)
C(23)	0.5302(7)	0.447(1)	0.3059(6)	7.0(3)
C(24)	0.500	0.515(1)	0.250	7.8(4)

a=15.616(3) Å, b=10.275(2) Å, c=20.201(5) Å, V=3241(2) Å³, mol. wt=635.45, density=1.302 g cm⁻³, Z=4, F(000)=1312, μ =0.886 mm⁻¹, scan type ω -2 θ , 2° \leq θ \leq 23°, crystal size 0.2 mm \times 0.3 mm \times 0.3 mm, number of independent reflections 2385, number of observed reflections 1202 [I \geq 3 σ (I)].

The bond distances and angles are listed in Table 6 and Table 7, respectively. The least-squares planes and dihedral angles are listed in Table 8. The fractional coordinates and thermal parameters of non-hydrogen atoms are listed in Table 9. The molecular structure of 1 is shown in Fig. 1. The molecule can be considered as a greatly distorted trigonal bipyramid, the chrysanthemate groups occupy the axial positions and the carbon atoms of the three phenyl groups linked to the antimony atom occupy the equatorial position. The torsion angles of the equatorial phenyl groups are 69.19°, 80.12° and 80.12° respectively (see Table 8). Therefore the three equatorial phenyl groups can be considered as a 'propellor blade'.

The distances Sb–O(1) and Sb–O(1a) [both 2.106(3) Å] are significantly different from the corresponding distances in Me₃Sb(O₂C–2–C₄H₃S)₂ [2.136(6), 2.124(6) Å]²⁰ and in Ph₃Sb(O₂C–2–C₄H₃S)₂ [2.145(4), 2.095(4) Å].²⁴ The distances Sb–O(2) and Sb–O(2a) [both 2.800(2) Å] are also different from the corresponding distances in

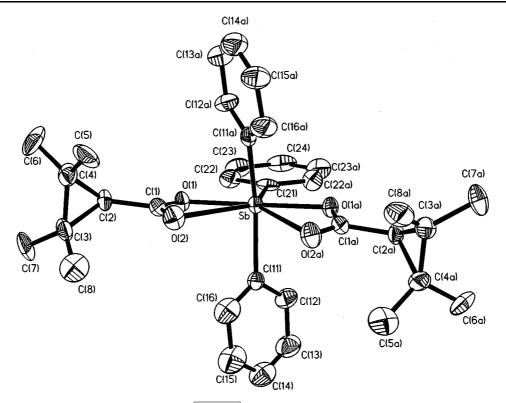


Figure 1 The molecular structure of Ph₃Sb(O₂CCHCMe₂CMe₂)₂.

 $Ph_3Sb(O_2C-2-C_4H_3S)_2$ [2.744(4), 2.949(4) Å]²⁴ and considerably shorter than the sum of the covalent radii (3.60 Å).²³ This indicates that there are coordination interactions between the carbonyl oxygens of the chrysanthemate groups and the antimony atom. The equatorial C(11)-Sb-C(11a) angle, which is affected by adjacent O(2) and O(2a), is increased to $150.0(3)^{\circ}$, while the C(11)-Sb-C(21) angle and C(11a)-Sb-C(21) angle are all decreased to 105.1(3)°. The corresponding equatorial angles in Ph₃Sb(O₂C- $2-C_4H_3S)_2$ are $145.9(2)^{\circ}$, $104.4(2)^{\circ}$ and $109.5(2)^{\circ}$ respectively.²⁴ Compound 1 and Ph₃Sb(O₂C-2-C₄H₃S)₂ have the same Ph₃Sb(V) moiety; they differ in their 2,2,3,3-tetramethylcyclopropyl and 2-thienyl groups. The structural differences between compound 1 and $Ph_3Sb(O_2C-2-C_4H_3S)_2$ are mainly caused by the steric effect of 2,2,3,3-tetramethylcyclopropyl. It is clear that the steric effect of 2,2,3,3-tetramethylcyclopropyl is greater than that of 2-thienyl. From Table 8 and Fig. 1 we can see that the atoms O(1), O(2), O(2a), O(1a), C(21) and Sb are virtually coplanar. The structure of the molecule of compound 1 thus tends towards a distorted pentagonal bipyramid with four oxygen atoms and C(21) in equatorial positions and two carbon atoms, C(11) and

C(11a), in axial positions. The antimony atom has a formal coordination number of seven.²⁴

CONCLUSIONS

Triorganoantimony dichrysanthemates with the general formula $R_3Sb(O_2CR')_2$ have plant growth-regulating activity. The nature of the R or R' group affects significantly both biological activities and structures of these compounds. The molecular structure of compound 1 tends towards a distorted pentagonal bipyrimid. The antimony atom has a formal coordination number of seven.

Acknowledgement We gratefully acknowledge financial support for this work from the Research Fund of the Institute of Elemento-Organic Chemistry.

REFERENCES

- 1. H. Schmidt, Liebigs Ann. Chem. 429, 123 (1922).
- 2. A. E. Goddard, J. Chem. Soc. 123, 2315 (1923).

F. Nerdel, J. Buddrus and K. Hoher, *Chem. Ber.* 97, 124 (1964).

- G. O. Doak, G. G. Long and L. D. Freedman, J. Organomet. Chem. 4, 82 (1965).
- M. Shindo and R. Okawara, *J. Organomet. Chem.* 5, 537 (1966).
- M. M. Y. Cheng, K. Su and J. I. Musher, *Israel J. Chem.* 12, 967 (1974).
- J. Havranek, J. Mleziva and A. Lycka, J. Organomet. Chem. 157, 163 (1978).
- 8. A. Ouchi, T. Uehiro and Y. Yoshino, *J. Inorg. Nucl. Chem.* **37**, 2347 (1975).
- A. Ouchi, H. Honda and S. Kitazima, J. Inorg. Nucl. Chem. 37, 2559 (1975).
- A. Ouchi, M. Nakatani, Y. Takakashi, S. Kitazima, T. Sugihara, M. Matsumoto, T. Uehiro, K. Kitano, K. Kawashima and H. Honda, Sci. Papers Coll. Gen. Educ. Univ. Tokyo, *Chem. Abstr.* 86, 5561 (1975).
- K. Bajpai, R. Singhal and R. C. Srivastava, *Indian J. Chem.* 18A, 73 (1979).
- 12. K. Bajpai, M. Srivastava and R. C. Srivastava, *Indian J. Chem.* **20A**, 736 (1981).
- R. G. Goel, E. Maslowski Jr and C. V. Senoff, *Inorg. Chem.* 10, 2572 (1971).
- R. G. Goel and D. R. Ridley, J. Organomet. Chem. 38, 83 (1972).
- G. Wittig and D. Hellwinkel, *Chem. Ber.* 97, 789 (1964).
- V. I. Lodochnikova, E. M. Panov and K. A. Kocheshkov, Zh. Obshch. Khim. 34, 946 (1964).

- F. Challenger and V. K. Wilson, *J. Chem. Soc.* 209 (1927).
- K. Singhal, R. Rastogi and P. Raj, *Indian J. Chem.* 26A, 146 (1987).
- R. G. Goel and H. S. Prasad, Spectrochim. Acta 32A, 569 (1976).
- H. Preut, M. Domagala and F. Huber, Acta Crystallogr. C43, 416 (1987).
- 21. D. B. Sowerby, J. Chem. Res. S 80 (1979).
- V. A. Lebedev, R. I. Bochkova, L. F. Kuzubova, E. A. Kuz'min, V. V. Sharutin and N. V. Belov, *Dokl. Akad. Nauk SSSR* 265, 332 (1982).
- 23. A. Bondi, J. Phys. Chem. 68, 441 (1964).
- M. Dogamala, F. Huber and H. Preut, Z. Anorg. Allg. Chem. 571, 130 (1989).
- F. R. De Ketellaere and G. P. Van Der Kelen, J. Organomet. Chem. 73, 251 (1974).
- W. J. Lile and R. S. Menzies, J. Chem. Soc. 617 (1950).
- K. Hartke and H.-M. Wolff, Chem. Ber. 113, 1394 (1980).
- 29. P. L. Millington and D. B. Sowerby, J. Chem. Soc., Dalton Trans. 1199 (1992).
- A. Glowacki, F. Huber and H. Preut, *Recl. Trav. Chim. Pays-Bas.* 107, 278 (1988).
- 31. L. W. Faucher, Israel Patent 36517 (1974).
- 32. B. Crammer, Z. Goldschmidt, R. Ikan and H. Spiegelstein, *J. Agric. Food Chem.* **33**, 1148 (1985).
- Z.-R. Zhao and G.-Q. Huang, *Acta Botan Sinica* 32, 815 (1990).