Application of NiO-Al₂O₃ aerogels to the CO₂-reforming of CH₄[†]

Toshihiko Osaki,¹* Toshiyuki Tanaka,² Tatsuro Horiuchi,¹ Toyohiko Sugiyama,¹ Kenzi Suzuki¹ and Toshiaki Mori¹

Ni(NO₃)₂ and Ni(CH₃COO)₂ were dispersed on AlOOH aerogels by supercritical drying and the activity of the resultant NiO−Al₂O₃ aerogels was investigated for the CO₂-reforming of CH₄. The aerogels showed higher and more stable activity for the reforming than an impregnation catalyst. X-ray diffraction analysis and temperature-programmed reduction suggested that fine nickel particles were formed on the aerogels with high dispersion and that they interacted strongly with alumina aerogel supports. The high performance of the aerogels was attributed to the fine nickel particles. Copyright © 2000 John Wiley & Sons, Ltd.

Keywords: nickel; aerogels; carbon dioxide; reforming of methane; X-ray

INTRODUCTION

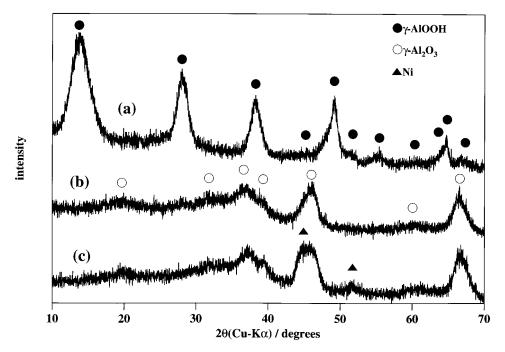
An efficient use of greenhouse-effect gases CH₄ and CO₂ as a source of carbon is a central issue in heterogeneous catalysis. Supported nickel catalysts are used industrially for the reforming because of high activity, long-term stability and low cost. However, nickel is prone to deactivation caused by carbon formation via CH₄ decomposition and CO disproportionation, leading to the plugging of the reactor tube. Considerable efforts have been concentrated on exploring catalysts that are resistant to carbon formation even at or near stoichiometric reactant ratios. A sulfur-passivated nickel

Here, in order to explore simple methods for synthesizing $NiO-Al_2O_3$ aerogels, $Ni(NO_3)_2$ and $Ni(CH_3COO)_2$ are dispersed on AlOOH aerogels by supercritical drying. The catalyst performance of the resultant $NiO-Al_2O_3$ aerogels was examined in comparison with an impregnation $NiO-Al_2O_3$ catalyst. For the impregnation catalyst, Al_2O_3 aerogel was used as a catalyst support.

EXPERIMENTAL

The method for preparing AlOOH gel from aluminium triisopropoxide was described in previous papers. ^{4,5} After water, nitric acid, urea and isopropyl alcohol present in the gel were replaced with ethanol by dipping the gel in ethanol for 3 days, 0.1 and 0.02 mol of the gel was respectively impregnated in Ni(NO₃)₂·6H₂O-C₂H₅OH (2.81 g–200 ml) and in Ni(CH₃COO)₂·4H₂O-C₂H₅OH (0.50 g–200 ml) for 1 day. Then, ethanol only was removed by supercritical drying according to the schedule reported previously. ^{4,5} After supercritical

E-mail: tosaki@nirin.go.jp


¹National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462-8510, Japan ²Daido Institute of Technology, Daido-cho, Minami-ku, Nagoya 457-8531, Japan

and noble metals³ have been found to show resistance to carbon formation; however, the low activities of the sulfur-passivated nickel and high costs and limited availability of the noble metals have prevented the application. In previous papers, we developed carbon-free reforming nickel catalysts, the novel NiO-Al₂O₃ aerogels, prepared from cyclic nickel glycoxide, (CH₂O)Ni, and boehmite sol, AlOOH, by the sol-gel technique and subsequent supercritical drying.^{4,5} In the aerogels, nickel ions were considered to be incorporated in γ-Al₂O₃ by replacing some parts of aluminium ions with nickel ones, i.e. nickel aluminate was considered to be formed throughout the aerogels. As a result, fine nickel particles appeared after reduction throughout the aerogel with high dispersion, which brought about not only higher activity but also much less activity for coking than impregnation catalysts.

^{*} Correspondence to: Toshihiko Osaki, National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462-8510, Japan.

[†] This paper is based on work presented at the Fifth International Conference on Carbon Dioxide Utilization (ICCDU V), held on 5–10 September 1999 at Karlsruhe, Germany.

T. OSAKI ET AL.

Figure 1 XRD spectra of (a) Ni(NO₃)₂–AlOOH aerogel after supercritical drying, (b) NiO–Al₂O₃ aerogel after calcination of Ni(NO₃)₂–AlOOH aerogel at 773 K for 4 h, and (c) Ni–Al₂O₃ aerogel after reduction of NiO–Al₂O₃ aerogel with hydrogen at 1073 K for 3 h.

drying, the aerogels were calcined in air at 773 K for 4 h. Before the reforming reactions, the aerogels were reduced with hydrogen (30 ml min⁻¹) at 1073 K for 3 h. For comparison, 10 wt% Ni–Al₂O₃ catalyst was prepared by impregnating Al₂O₃ aerogel (3 g) in an aqueous solution of Ni-(NO₃)₂·6H₂O (1.65 g) followed by drying and subsequently calcining at 773 K for 3 h.

Thermogravimetry (TG; Shimadzu, TGA-50) and differential thermal analysis (DTA; Shimadzu, DTA-50) were performed in air at a constant ramping rate of 5 K min⁻¹. Crystalline phases of aerogels were identified using a powder X-ray diffractometer (XRD; Rigaku, RAD-1VC) with a copper tube operated at 30 kV and 20 mA. Reduction of NiO to nickel in NiO-Al₂O₃ aerogels was investigated by temperature-programmed reduction (TPR): ca 25 mg of sample was put in a quartz tube (i.d. 4 mm) and the temperature was ramped at 5 K min⁻¹ to 1273 K in hydrogen–argon carrier gas (5:95, 30 ml min⁻¹). The hydrogen consumption was continuously monitored by gas chromatography with a thermal conductivity detector (Shimadzu, GC-8A). BET surface area was measured by a nitrogen adsorption apparatus (Japan Bel, Belsorp 28 SP) at liquid-nitrogen temperature. Hydrogen gas adsorption was measured by a conventional pulse adsorption technique in argon carrier gas using gas chromatography with a thermal conductivity detector. Nickel loading in the catalysts was measured by atomic absorption (Shimadzu, AA-610).

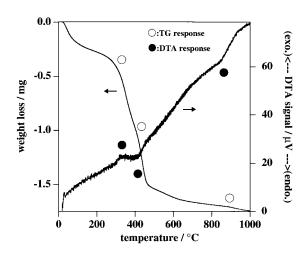


Figure 2 TG and DTA of Ni(NO₃)₂-AlOOH aerogel in air.

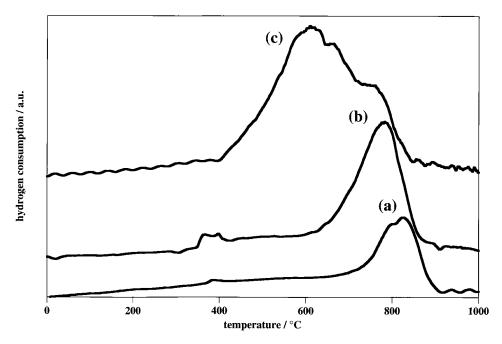


Figure 3 TPR of (a) NiO-Al $_2$ O $_3$ aerogel from Ni(NO $_3$) $_2$ (25.4 mg), (b) NiO-Al $_2$ O $_3$ aerogel from Ni(CH $_3$ COO) $_2$ (24.9 mg), and (c) NiO-Al $_2$ O $_3$ impregnation catalyst (25.3 mg).

Continuous flow reaction of CH_4 – CO_2 (1:1, 60 ml min⁻¹) was carried out using a conventional fixed-bed flow reactor (i.d. 4 mm) under atmospheric pressure at 1073 K for 24 h. The effluent gases were analysed by gas chromatography with a thermal conductivity detector. The CH_4 – CO_2 reforming was also investigated under the differential reactor conditions and the specific activity r/s^{-1} was calculated by dividing the rate of total CH_4 conversion with the amount of H_2 adsorbed:

$$r = \frac{\text{CH}_4 \text{ conversion rate } (\mu \text{mol s}^{-1} \text{ g}^{-1})}{\text{H}_2 \text{ adsorption } (\mu \text{mol g}^{-1}) \times 2}$$

Carbon formation during CH_4 – CO_2 (1:1, 40 ml min⁻¹) was investigated by TG.

RESULTS AND DISCUSSIONS

Figure 1(a) shows XRD spectrum of Ni(NO₃)₂–AlOOH aerogel after supercritical drying. The crystalline phase was assigned to γ -AlOOH only and no nickel-containing phases were detected. This suggests that nickel nitrate was highly dispersed on AlOOH aerogel.

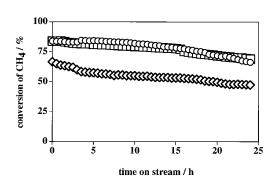
Figure 2 shows the TG-DTA spectrum of Ni(NO₃)₂-AlOOH aerogel in air. A significant weight decrease and the corresponding exothermal peak were observed at ca 320 °C, indicating that organic compounds like ethanol remaining in the aerogel were burned at that temperature. After the combustion, a further weight decrease corresponding to an endothermal peak was observed at ca 410 °C. This must be due to a structure change from γ -AlOOH to γ -Al₂O₃ by releasing 0.5 moles of H₂O per mole of AlOOH.4 At this temperature, Ni-(NO₃)₂·6H₂O may also be decomposed to give NiO (or nickel aluminate) by releasing NO_x and H_2O . Phase transformation from γ - to δ -Al₂O₃ was observed at ca 850 °C, at which temperature a slight weight decrease and a corresponding endothermal peak were observed.

Figure 1(b) shows the XRD profile of the aerogel after calcination of Ni(NO₃)₂–AlOOH aerogel. The calcined aerogel exhibited the γ -Al₂O₃ phase only and no nickel-containing phases were observed. Since the XRD profile for NiAl₂O₄ is almost the same as that for γ -Al₂O₃, nickel atoms in the aerogels are considered to be incorporated in the γ -Al₂O₃ structure by forming nickel aluminate.

TPR profiles are shown in Fig. 3. The reduction of NiO to nickel was observed at ca 800 °C for

Precursor	Ni content (wt %)	H_2 ads. (μ mol g ⁻¹)	$BET^1 (m^2 g^{-1})$	Ni crystallite size (nm)
Ni(NO ₃) ₂	3.8	14.1	289	2.9
Ni(CH ₂ COO) ₂	6.2	33.9	268	<i>4</i> 1

43.3


Table 1 Characterization of Ni-Al₂O₃ aerogels and Ni-Al₂O₃ impregnation catalyst

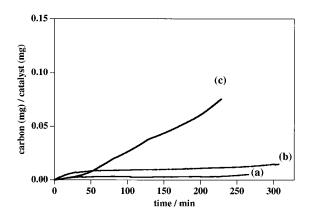
11.7

Impregnation

NiO-Al₂O₃ aerogels, whereas the reduction was observed at ca 600 °C for NiO-Al₂O₃ impregnation catalyst. This also strongly suggests that nickel is incorporated in the alumina structure, i.e. aluminium ions in tetrahedral or octahedral sites are partially replaced with nickel ions. On the impregnation catalyst, on the other hand, nickel oxide may be located on the surface of the alumina support, thereby the reduction should proceed at a lower temperature. Fig. 1(c) shows the XRD pattern after the reduction of NiO-Al₂O₃ aerogel with hydrogen, which confirmed the appearance of the nickel phase. From the peak-broadening of Ni (200), the nickel crystallite size was estimated using Scherrer's equation. The results are shown in Table 1. The nickel crystallite size was ca 2.9–4.1 nm, suggesting that fine nickel particles are formed on the aerogels after hydrogen reduction.

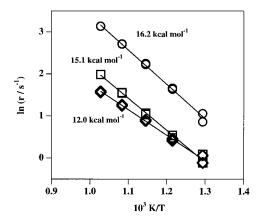
In Table 1, the concentrations of nickel in the catalysts are also shown. The nickel loading was 3.8 wt% and 6.2 wt% for the aerogels prepared from Ni(NO₃)₂ and N(CH₃COO)₂ respectively, indicating that not all of the nickel was incorporated in the aerogels. This is because 10 wt% Ni–Al₂O₃ should be obtained if all of nickel were incorporated. Therefore, some of the nickel salts were considered

Figure 4 Effect of time on stream on CH₄–CO₂ (1:1, 60 ml min⁻¹) reaction at 1073 K for 24 h; \bigcirc : Ni–Al₂O₃ aerogel from Ni(NO₃)₂ (29.2 mg); \square : Ni–Al₂O₃ aerogel from Ni(CH₃COO)₂ (29.8 mg); \lozenge : Ni–Al₂O₃ impregnation catalyst (31.1 mg).


to remain in the autoclave after the supercritical drying. As for the impregnation catalyst, on the contrary, a slightly high value (11.7 wt%) was obtained. The BET surface area of NiO-Al₂O₃ aerogels was 268–289 m² g⁻¹, whereas the surface area was 182 m² g⁻¹ for the impregnation catalyst (Al₂O₃ aerogel support, 259 m² g⁻¹).

5.7

182


Figure 4 shows the effect of time on stream on CH₄–CO₂ reforming at 1073 K. The aerogels exhibited higher activities than the impregnation catalyst and the deactivation was less significant on the aerogels than on the impregnation catalyst: the initial CH₄ conversion was 83.9% and 83.8% for the aerogels prepared from Ni(NO₃)₂ and Ni(CH₃COO)₂ respectively and the final conversions were 66.5% and 69.2%, whereas CH₄ conversion was changed from 66.7 to 47.5% on the impregnation catalyst.

The coking profiles during the reforming are shown in Fig. 5. The aerogels showed much less activities for coking than the impregnation catalyst, which must be a main cause for the retardation of catalyst deactivation. The suppression of coking is ascribed to the fine nickel particles formed on the

Figure 5 Carbon formation during CH_4 – CO_2 (1:1, 40 ml min⁻¹) reaction at 1073 K on (a) Ni– Al_2O_3 aerogel from Ni(NO₃)₂ (20.4 mg), (b) Ni– Al_2O_3 aerogel from Ni(CH₃COO)₂ (12.1 mg), and (c) Ni– Al_2O_3 impregnation catalyst (21.0 mg).

¹ Surface areas of NiO-Al₂O₃ aerogels and NiO-Al₂O₃ impregnation catalyst.

Figure 6 Arrhenius plots of specific activities and activation energies for CH_4 – CO_2 (1:1, 60 ml min $^{-1}$) reaction under the differential reactor conditions; \bigcirc : Ni–Al₂O₃ aerogel from Ni(NO₃)₂ (10.3 mg); \square : Ni–Al₂O₃ aerogel from Ni(CH₃COO)₂ (10.1 mg); \diamondsuit : Ni–Al₂O₃ impregnation catalyst (10.3 mg).

aerogels, which may inhibit carbon dissolution in the crystal and subsequent carbon nucleation.

The results of steady-state CH₄–CO₂ reforming under the differential reactor conditions are shown

in Fig. 6. The specific activity was higher on the aerogels than on the impregnation catalyst, although the difference was small between the aerogel from Ni(CH₃COO)₂ and the impregnation catalyst. Between the aerogels, the activity was higher on the aerogel prepared from Ni(NO₃)₂ having finer nickel particles. This suggests that the reforming reaction is more enhanced on finer nickel particles. The enhancement of the reforming on fine nickel particles is also one of the causes for suppression of carbon formation during the reforming.

REFERENCES

- Rostrup-Nielsen JR, Bak Hansen J-H, Aparicio LM. Sekiyu Gakkaishi 1997; 40: 366.
- 2. Rostrup-Nielsen JR. J. Catal. 1993; 144: 38.
- 3. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF. *Nature* 1991; **352**: 225.
- Osaki T, Horiuchi T, Sugiyama T, Suzuki K, Mori T. J. Non-Cryst. Solids 1998; 225: 111.
- Osaki T, Horiuchi T, Sugiyama T, Suzuki K, Mori T. Catal. Lett. 1998; 52: 171.