Dehydrogenation of ethylbenzene to styrene in the presence of CO₂[†]

Naoki Mimura* and Masahiro Saito

Global Warming Control Department, National Institute for Resources and Environment (NIRE), 16-3 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan

The relationship between the yield of styrene and the energy required for separation by the model distillation system clearly indicates that it is possible to save energy by a new process using CO_2 .

An Fe₂O₃(10 wt%)-Al₂O₃(90 wt%) catalyst prepared by a coprecipitation method was found to be effective for dehydrogenation of ethylbenzene to produce styrene in the presence of CO₂, instead of the steam used in commercial processes. The dehydrogenation of ethylbenzene over the catalyst in the presence of CO₂ was considered to proceed both *via* 45% of a one-step pathway and *via* 55% of a two-step pathway. CO₂ was found to suppress the deactivation of the catalyst during the dehydrogenation of ethylbenzene. Copyright © 2000 John Wiley & Sons, Ltd.

Keywords: ethylbenzene; styrene; dehydrogenation; CO₂; Fe₂O₃/Al₂O₃ catalyst; energy-saving

following the reactor. Recently, CO₂ has received much attention as a co-feed gas instead of steam, because it is always gaseous throughout the dehydrogenation process. We have already reported on the energies required for producing styrene by the present commercial process using steam and by the new process using CO₂ (shown in Table 1). Therefore, the dehydrogenation process using CO₂ could be an energy-saving process. Since Fe-Kbased catalysts used for the present commercial dehydrogenation processes do not work effectively in the presence of CO₂, a high-performance catalyst for the dehydrogenation of ethylbenzene in the presence of CO₂ has been required. Other groups presented several catalysts for the dehydrogenation using CO₂, ²⁻⁵ and the authors also reported that iron-oxide-based catalysts were effective for the new dehydrogenation.

In the present paper, we report on the energy required for separation of the mixture of ethylbenzene and styrene, which presents one of the advantages of using CO_2 instead of steam, and several properties of iron-oxide-based catalysts for the dehydrogenation of ethylbenzene in the presence of CO_2 .

INTRODUCTION

Styrene is one of the most important basic chemicals as a raw material of polymers. It is commercially produced by the dehydrogenation of ethylbenzene in the presence of a large quantity of steam at high temperatures of 873 to 973 K. It has been pointed out that the present commercial processes consume large amounts of energy because not all the latent heat of condensation of steam is recovered at the liquid–gas separator

DETERMINATION OF THE ENERGY REQUIRED FOR SEPARATION

The equilibrium yield of styrene is increased by using CO₂ instead of steam. In the commercial processes, a large amount of energy is required for separation of the mixture of ethylbenzene and styrene, because boiling points are very near (ethylbenzene: 136 °C; styrene: 145 °C.) In this section, the relationship between the yield of styrene and the energy required for separation by distillation is investigated. The model distillation system for determining the energy required for separation is shown in Fig. 1. The flow rates, reflux ratio, reboiling ratio and temperature were calcu-

^{*} Correspondence to: M. Mimura, Global Warming Control Department, National Institute for Resources and Environment (NIRE), 16-3 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.

[†] This paper is based on work presented at the Fifth International Conference on Carbon Dioxide Utilization (ICCDU V), held on 5–10 September 1999 at Karlsruhe, Germany.

774 N. MIMURA AND M. SAITO

Table 1	Energy	required	for	producing	styrenea
I abic I	Lifergy	required	101	producing	Stylei

		Commercial process 10 ⁸ cal/styrene-t	New process 10 ⁸ cal/styrene-t
Input (1)	Boiler	17.8	11.7
	Evaporator	2.2	
Output (2)	Combustion of off-gas	5.0	5.6
	Surplus energy	_	4.6
Energy required	$(1)^{-}(2)$	15.0	1.5

^a This table is reproduced from Ref. 1(b).

lated using a personal computer using the software 'EQUATRAN'. The results are presented in Fig. 2, and they clearly indicate that it is possible to save energy for separation by the new process using CO_2 .

EXPERIMENTAL

Iron-oxide-based catalysts were prepared by an impregnation method or a coprecipitation method. In the case of catalysts prepared by an impregnation method, Al₂O₃ (JRC-ALO4, or prepared by a precipitation method from Al(NO₃)₃·6H₂O and sodium carbonate, <0.18 mm), SiO₂ (CARIACT

Q-3, Fuji Silisia Chemical Ltd, 0.075–0.5 mm) or activated carbon (AC; Shirasagi, Takeda Ltd, 0.18–0.30 mm) were used as supports. After a slurry composed of an aqueous solution of Fe(NO₃)₃·9H₂O and the support was stirred for 2 h, the slurry was vacuum dried at 373 K. The coprecipitation method was carried out as follows: both the aqueous solution (300 ml) containing $Fe(NO_3)_3 \cdot 9H_2O$ and $Al(NO_3)_3 \cdot 6H_2O$ (Fe + Al = 0.30 mol) and an aqueous solution (300 ml) of Na₂CO₃ (0.495 mol) were simultaneously added to vigorously stirred distilled water. The precipitate was washed with distilled water, filtered and then dried at 393 K. The precursors prepared by both methods, except for Fe-AC, were calcined in air at 1023 K for 5 h. Then they were pelletized at 200 kg

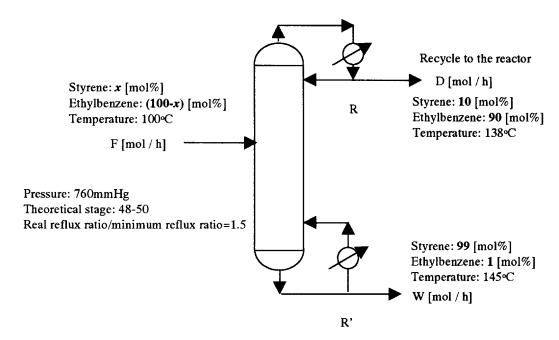


Figure 1 The model distillation system to determine the energy required for separation.

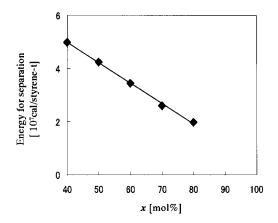


Figure 2 Energy required for separation.

m⁻², and crushed and sieved to 0.18–0.3 mm. The Fe–AC catalyst was used without further treatment after vacuum drying.

The dehydrogenation of ethylbenzene was carried out using a quartz tube reactor. Before the reaction, the catalyst (1.4 g or 0.8 g) was treated with CO₂ or He as a co-feed gas for 15 min at 823 K. Then, the dehydrogenation was performed at 823 K under atmospheric pressure. The molar ratio of the co-feed gas to ethylbenzene was selected to be 11, because to typical ratio of steam to ethylbenzene in a commercial process is 7 to 12. The flow rate of ethylbenzene was fixed at 0.50 mmol min⁻¹. The products were liquified by a cold trap at 268 K and analyzed using flame ionization detector gas chromatograph. The gaseous products passing through the trap were

analyzed using an on-line thermal conductivity detector gas chromatograph.

Catalysts were analyzed with power X-ray diffraction (XRD) using a Rigaku RAD-3A X-ray diffractometer with Cu $K\alpha$ radiation.

RESULTS AND DISCUSSION

Table 2 shows the catalytic performances of various iron-oxide-based catalysts for the dehydrogenation of ethylbenzene in the presence of CO_2 at a time on stream of 6 h. Toluene and benzene were detected as by-products in liquid products, whereas only CH_4 was detected as a by-product in gaseous products.

Entries 1 to 3 in Table 2 clearly indicate that alumina is much better as a support than SiO₂ and AC. Entries 3 to 5 suggest that the coprecipitation method could provide a highly active Fe₂O₃-Al₂O₃ catalyst. Since neither Fe₂O₃ alone nor Al₂O₃ alone were highly active, as shown in Table 2, and some special interaction between iron oxide and alumina might be necessary for a highly active catalyst. The XRD pattern before the reaction gave no significant peaks corresponding to a composite oxide between iron and aluminum, such as FeAlO₃ or FeAl₂O₄; only broad peaks assigned to γ-Al₂O₃ were present These findings suggest that the active sites composed of iron and aluminum might be amorphous and/or highly dispersed. Since the XRD pattern of the catalyst was hardly changed during

Table 2 Yields and selectivities of styrene by the dehydrogenation of ethylbenzene over iron-oxide-based catalyst in the presence of CO_2

No.	Catalyst	Yield (%)	Selectivity (%)	Method of preparation
1	Fe ₂ O ₃ –SiO ₂ (10 wt%–90 wt%)	6.9	89.7	Impregnation
2	$Fe_2O_3-AC^{d}$ (10 wt%-90 wt%)	8.6	86.3	Impregnation
3	$Fe_2O_3-Al_2O_3^a$ (10 wt%-90 wt%)	20.3	95.7	Impregnation
4	$Fe_2O_3-Al_2O_3^b$ (10 wt%-90 wt%)	24.4	96.2	Impregnation
5	$Fe_2O_3-Al_2O_3$ (10 wt%-90 wt%)	33.2	95.7	Coprecipitation
6	α -Fe ₂ O ₃	$3.2^{\rm c}$	83.1°	Reagent
7	Al_2O_3	9.0	88.4	JRC-ALO4
8	Al_2O_3	6.8	85.8	Precipitation
9	None	2.0	78.3	

The yield and selectivity were observed at 6 h.

Copyright © 2000 John Wiley & Sons, Ltd.

^a The Al_2O_3 is JRC-ALO4 (the reference catalyst provided by the Catalysis Society of Japan). ^b The Al_2O_3 is prepared from $Al(NO_3)_3$ and Na_2CO_3 by the precipitation method.

c 2.17 h.

^d AC: activated carbon.

776 N. MIMURA AND M. SAITO

Figure 3 Relationship between R and the yield of styrene. R = CODH/(yield of styrene); reaction temperature: 823 K; pressure: 1 atm; $\text{CO}_2/\text{ethylbenzene}$: 11.

the reaction for 6.5 h, the bulk structure of the catalyst might be unchanged during the reaction.

There are two possible reaction pathways for the dehydrogenation in the presence of CO₂, as shown in Scheme 1: a one-step pathway, shown in Eqn [1], and a two-step pathway *via* Eqn [2] followed by Eqn [3]:

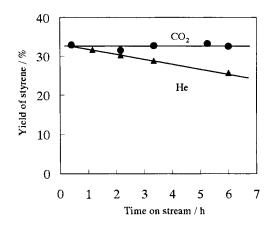
$$\begin{split} \text{Ph---CH}_2\text{CH}_3 + \text{CO}_2 \rightarrow \\ \text{Ph----CH}=\text{CH}_2 + \text{CO} + \text{H}_2\text{O} \quad [1] \end{split}$$

$$Ph$$
— $CH_2CH_3 \rightarrow Ph$ — $CH=CH_2 + H_2$ [2]

$$H_2 + CO_2 \rightarrow CO + H_2O$$
 [3]

Scheme 1.

In order to elucidate the pathway of the dehydrogenation over Fe₂O₃–Al₂O₃ catalysts, the yield of CO based on ethylbenzene supplied only by the dehydrogenation, (hereinafter termed CODH) as a function of styrene yield was examined by changing W/F at a CO₂/ethylbenzene ratio of 11. CO was also produced by the CO₂ decomposition of ethylbenzene, as shown in Scheme 2:


Ph—CH₂CH₃ + CO₂
$$\rightarrow$$
 Ph—CH₃ + 2CO + H₂[4]
Ph—CH₂CH₃ + 2CO₂ \rightarrow Ph—H + 4CO + 2H₂[5]
Scheme 2.

Methane was detected as a by-product, which was produced by hydrocracking as shown in Scheme 3:

$$Ph$$
— $CH_2CH_3 + H_2 \rightarrow Ph$ — $CH_3 + CH_4$ [6]

$$Ph-CH2CH3 + 2H2 \rightarrow Ph-H + 2CH4$$
 [7]

Scheme 3.

Figure 4 Effect of co-feed gases on the deactivation of an Fe₂O₃–Al₂O₃ catalyst Catalyst weight: 1.4 g (CO₂), 0.8 g (He); reaction temperature: 823 K.

The yield of CO produced only by the CO₂ decomposition, (hereinafter termed CODC) was calculated by the following equation:

$$CODC = [4 \times (yield of benzene) + 2 \\ \times (yield of toluene) - 2 \\ \times (yield of methane)]$$

Accordingly, CODH was determined by subtracting CODC from the total yield of CO. Then, *R* was defined as follows:

$$R = \text{CODH/(yield of styrene)}$$

When the dehydrogenation proceeds only via the one-step pathway, R should be unity at any yield of styrene. On the other hand, R should increase from zero with increasing yield of styrene for a two-step dehydrogenation. Figure 3 shows the relationship between R and the yield of styrene. R was found to increase almost linearly with increasing yield of styrene from 0.4 at a styrene yield of zero. This finding suggests that the dehydrogenation of ethylbenzene over the Fe₂O₃-Al₂O₃ catalyst in the presence of CO₂ should take place simultaneously via both one-step and two-step pathways. In the case of the one-step pathway, the intermediate absorbed on the catalyst would directly react with CO₂ to produce styrene, CO and H₂O. On the other hand, in the case of the two-step pathway, the intermediate would be dehydrogenated into styrene and molecular hydrogen, and then the hydrogen produced reacts with CO₂ to produce CO and H₂O by a reverse water-gas shift reaction. A total of 45% styrene might be produced by the onestep pathway and 55% styrene by the two-step

pathway under the reaction conditions shown in Fig. 3.

Figure 4 shows the activity of the Fe₂O₃-Al₂O₃ (10 wt%–90 wt%) catalyst in the presence of CO₂ or of helium as a function of time on stream. Since the initial yield of styrene in the presence of helium (48%) was about 45% higher than that in the presence of CO₂, the weight of the catalyst used for the dehydrogenation in the presence of helium was reduced in order to obtain the same initial yield of styrene as that for the dehydrogenation in the presence of CO₂. The catalyst was rapidly deactivated during the dehydrogenation in the presence of helium, whereas the deactivation of the catalyst was hardly observed during the dehydrogenation in the presence of CO₂. There might be two possible causes for the deactivation of the catalyst during the dehydrogenation. One is the reduction of active sites in the catalyst with hydrogen or CO produced during the dehydrogenation. The other one is the deposition of coke on the catalyst. The role of CO₂ in suppressing the catalyst deactivation is now under investigation.

CONCLUSIONS

The conclusions are as follows.

(1) It is possible to save energy in the separation

- of ethylbenzene and styrene by a new process using CO_2 .
- (2) The Fe₂O₃–Al₂O₃ catalyst prepared by a coprecipitation method was effective for the dehydrogenation in the presence of CO₂.
- (3) The dehydrogenation of ethylbenzene over an Fe₂O₃-Al₂O₃ catalyst in the presence of CO₂ was considered to proceed *via* both onestep and two-step pathways.
- (4) CO₂ suppressed the deactivation of the catalyst during the dehydrogenation.

REFERENCES

- (a) Mimura N, Takahara I, Saito M, Hattori T, Ohkuma K, Ando M. In Studies in Surface Science and Catalysis, Vol. 114, Inui T, Anpo M, Izui K, Yanagida S, Yamaguchi T. (eds.) Elsevier: Amsterdam, 1998; (b) Mimura N, Takahara I, Saito M, Hattori T, Ohkuma K, Ando M. Catal. Today 1998; 45: 61.
- Sugino M, Shimada H, Turuda T, Miura H, Ikenaga N, Suzuki T. Appl. Catal. A 1995; 121: 125.
- 3. Sato S, Ohhara M, Sodesawa T, Nozaki F. Appl. Catal. 1998; 37: 207.
- 4. Chang JS, Park SE, Park MS, Chem. Lett. 1997; 1123.
- Badstube T, Papp H, Kustrowski P, Dziembaj R. Catal. Lett. 1998; 55: 169.