Three-centre Rh—H—Sn bonds: an NMR study of the effects of varying the electron density on rhodium[†]

Laurence Carlton*

Centre for Molecular Design, Department of Chemistry, University of the Witwatersrand, Johannesburg, Republic of South Africa

The complexes $[Rh(X)(H)(SnPh_3)(PPh_3)(L)]$ $(X = NCBPh_3$ (a), $N(CN)_2$ (b), NCS (c), NCO(d), N_3 (e); L = 1-methylimidazole) (1) show systematic changes in δ (¹¹⁹Sn), δ (¹⁰³Rh), J(¹¹⁹Sn–¹H) and J(¹¹⁹Sn–¹⁰³Rh) that are related to the electron-donating properties of X. As X becomes more electron-rich, $\delta(^{103}\text{Rh})$, becomes more electron-rich, δ (¹⁰³Rh), J(¹¹⁹Sn-¹H) and J(¹¹⁹Sn-¹⁰³Rh) increase and δ^{119} Sn) decreases. The related complexes *trans*- $[Rh(X)(H)(SnPh_3)(PPh_3)_2(L)]$ $(X = N(CN)_2,$ NCO; L = 4-carboxymethylpyridine (x), pyridine (v) and 4-dimethylaminopyridine (z)) (2), show a continuation of the trends in $\delta^{(119)}$ Sn) and $J(^{119}{\rm Sn}{^{-1}H})$, but not $\delta(^{103}{\rm Rh})$ or $J(^{119}{\rm Sn}{^{-103}Rh})$. Data for 1 and 2 show that within certain limits of type of ligand varied (X = N-donor, L = a)pyridine) and coordination geometry, the response of $\delta(^{119}{\rm Sn})$ and $J(^{119}{\rm Sn}^{-1}{\rm H})$ to changes in electron density on rhodium is largely independent of the means by which the change is effected. Copyright © 2001 John Wiley & Sons,

Keywords: rhodium; NMR; three-centre bonds; electron density

Received 13 December 1999; accepted (revised) 19 May 2000

INTRODUCTION

Three-centre bonded complexes serve as models for the transition state in the oxidative addition of an alkane to a *d*-block metal.¹ By using tin instead of

* Correspondence to: Laurence Carlton, Centre for Molecular Design, Department of Chemistry, University of the Witwatersrand,

Contract/grant sponsor: University of Witwatersrand. Contract/grant sponsor: South African NRF.

When $J(^{119}\text{Sn}-^{1}\text{H})$ for complex **1** (L = 1-methylimidazole) is plotted as a function of $\delta(^{119}\text{Sn})$ (Fig.

carbon a much wider range of such complexes becomes accessible and the higher natural abundance of spin 1/2 isotopes (119 Sn 8.6%, 117 Sn 7.6%) facilitates the measurement of NMR parameters. The tin–hydrogen spin-coupling constant J(Sn-H) [for values $\lesssim 200~\text{Hz}~J(^{119}\text{Sn-}^1\text{H}) \approx J(^{117}\text{Sn-}^1\text{H})$] in a three-centre bonded Ph₃SnH complex has a value in the range $\approx 90-350~\text{Hz},^2$ significantly higher than for the full oxidative addition product ($\approx 20-40~\text{Hz}$) but much lower than for free Ph₃SnH [$J(^{19}\text{Sn-}^1\text{H}) = 1950~\text{Hz}$], making it a useful indicator of the presence of a three-centre bond.

The three-centre-bonded complexes on which this study is based form part of a series that is described more fully elsewhere.³

EXPERIMENTAL

Complexes 1 and 2 (Fig. 1) are readily prepared *in situ* at 0 °C (1) and -50 °C (2) from [Rh(X) (PPh₃)₃],⁴ a nucleophile and Ph₃SnH. For a typical measurement the sample was prepared by dissolving [Rh(X)(PPh₃)₃] (20 mg) in 0.5 ml of 10% pyridine–dichloromethane (5% CD₂Cl₂) in an NMR tube under argon. The tube was cooled to -50 °C in a xylene slurry, Ph₃SnH (\approx 10 mg) was added, and the tube sealed and transferred quickly to the spectrometer at -60 °C. Spectra were recorded on a Bruker DRX 400 spectrometer equipped with a 5 mm triple resonance inverse probe with extended decoupler range and dedicated ³¹P channel. ¹⁰³Rh spectra were obtained by indirect detection using phosphorus by means of the pulse sequence $\{\pi/2(^{31}P)-1/[2J(^{103}Rh-^{31}P)]-\pi/2(^{103}Rh)-\tau-\pi/2(^{103}rh(-Aq(^{31}P))\}.$

RESULTS AND DISCUSSION

Johannesburg, Republic of South Africa. † Presented at the XIIIth FECHEM Conference on Organometallic Chemistry, 29 August–3 September, 1999, Lisbon, Portugal.

158 Laurence Carlton

Figure 1 Complexes studied. $X = NCBPh_3$ (a), $N(CN)_2$ (b), NCS (c), NCO (d), N₃ (e); L = 1-methylimidazole (1 only), 4- $MeO_2Cpy(x)$, py (y), 4- $Me_2Npy(z)$.

2a and Table 1) an approximately linear relationship is found with $^2J(^{119}\mathrm{Sn}{^-}^1\mathrm{H})$ (positive sign) increasing and $\delta(^{119}\mathrm{Sn})$ decreasing as ligand X increasing and $\delta(^{113}\text{Sn})$ decreasing as ligand X becomes more strongly electron donating. A similar result is found for $^2J(^{119}\text{Sn}^{-1}\text{H})/\delta(^{103}\text{Rh})$ (Fig. 2b) and $^2J(^{119}\text{Sn}^{-1}\text{H})/^1J(^{119}\text{Sn}^{-103}\text{Rh})$ (Fig. 2c) with both $\delta(^{103}\text{Rh})$ and $^1J(^{103}\text{Rh}^{-119}\text{Sn})$ (positive sign) increasing as X becomes more electron rich. In Fig. 3 a plot of $J(^{119}\text{Sn}^{-1}\text{H})$ against $\delta(^{119}\text{Sn})$ is shown for 1 and 2 with X = N(CN)₂ and NCO and with L varied. The effect on the $J(^{119}\text{Sn}^{-1}\text{H})/^{119}$

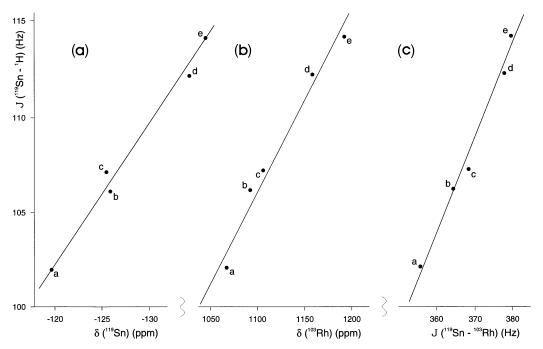
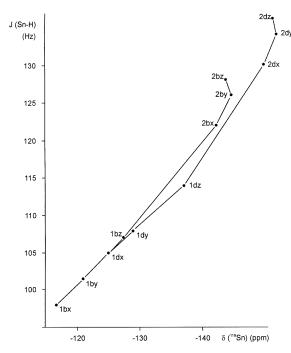


Figure 2 Plots of $J(^{19}Sn^{-1}H)$ against $\delta(^{119}Sn)$ (a), $\delta(^{103}Rh)$ (b) and $J(^{119}Sn^{-103}Rh)$ (c) for 1 (L = 1-methylimidazole, X varied) in dichloromethane at -25 °C.

Table 1 Spectral data for $[Rh(X)(H)(SnPh_3)(PPh_3)(L)]^a$ (1) (L = 1-methylimidazole)


X	δ (103 Rh) b	$\delta(^{119}\mathrm{Sn})^{\mathrm{c}}$	$J(^{119}\text{Sn}-^{1}\text{H})^{d}$	$J(^{119}\text{Sn}-^{103}\text{Rh})^{d}$
NCBPh ₃	1067	-119.7	102	356
$N(CN)_2$	1094	-126.0	106	365
NCS	1108	-125.7	107	369
NCO	1162	-134.6	112	379
N_3	1196	-136.3	114	381

^a Solvent dichloromethane, temperature −25 °C.

^b δ relative to 3.16 MHz (Ref. 6).

 $^{^{\}rm c}$ δ relative to SnMe₄, external standard.

d Coupling constants in hertz. The sign of each is most probably positive.

Figure 3 Plot of $J(^{119}Sn-^{1}H)$ against $\delta(^{119}Sn)$ for **1** and **2** [X = N(CN)₂ (b), NCO (d); L = MeO₂Cpy (x), py (y), Me₂Npy (z)] in dichloromethane at -60 °C.

 $\delta(^{119}{\rm Sn})$ gradient of varying X and L and of the change in coordination geometry from 1 to the more electron-rich 2, is relatively slight. For 1 the effects of change of X and change of L are indistinguishable. This correlation between $J(^{119}{\rm Sn}^{-1}{\rm H})$ and $\delta(^{119}{\rm Sn})$ is most clearly seen for X = N-donor and L = a pyridine, becoming less clear for X = chloride (not shown) and does not hold for an isomeric form of 2 with a phosphine

positioned *trans* to tin. The values of $\delta(^{103}\text{Rh})$ and $J(^{119}\text{Sn}-^{103}\text{Rh})$ do not show continuity from **1** to **2** [$\delta(^{103}\text{Rh})$ decreases to $\approx 500 \text{ ppm}$].

The rhodium and tin chemical shifts are a function of both ΔE^{-1} (where ΔE is an average electronic excitation energy) and $< r^{-3} >$ (where r is the average d orbital radius), 7,8 terms that exert opposing influences on δ in response to changes in electron density on the metal. ΔE^{-1} is also a major contributor to $J(^{119}\mathrm{Sn-}^{1}\mathrm{H})$ and $J(^{119}\mathrm{Sn-}^{103}\mathrm{Rh})$. The change in $\delta(^{103}\mathrm{Rh})$ can be accounted for in terms of a decrease in ΔE that might be expected to accompany the presence of increasingly electron-donating ligands, and similarly for $J(^{119}\mathrm{Sn-}^{1}\mathrm{H})$ and $J(^{119}\mathrm{Sn-}^{103}\mathrm{Rh})$. The decrease in $\delta(^{119}\mathrm{Sn})$ is likely to reflect a dominant role for $< r^{-3} >$ and also a progressive change in coordination number from four to five.

Complexes 2 with $X = N(CN)_2$, NCO and L = 4-Me₂Npy, show a departure from the trend to lower $\delta(^{1f9}Sn)$ (Fig. 3) as L becomes more nucleophilic. Here an *increase* in $\delta(^{119}Sn)$ is observed together with a quite small increase in $J(^{119}Sn^{-1}H)$. These findings can be rationalized in terms of a change in tin geometry, now in the direction of four-coordinate, that might be expected to accompany a weakening of the Ph₃SnH–Rh interaction. As a consequence of the complementary increase in the Sn–H interaction, an increased contribution from $^{1}J(^{119}Sn^{-1}H)$ (which has negative sign) would be expected to diminish the observed change in $J(^{119}Sn^{-1}H)$.

Acknowledgements I thank the University of the Witwatersrand and the South African NRF for financial support.

Table 2 Spectral data for $[Rh(X)(H)(SnPh_3)(PPh_3)(L)]$ (1) and $[Rh(X)(H)(SnPh_3)(PPh_3)_2(L)]$ (2)^a

		Con	Complex 1		Complex 2	
X	L	$\delta(^{119}\mathrm{Sn})^{\mathrm{b}}$	$J(^{119}\mathrm{Sn}-^{1}\mathrm{H})^{\mathrm{c}}$	δ (119Sn) ^b	$J(^{119}\text{Sn}-^{1}\text{H})^{c}$	
$N(CN)_2$	4-MeO ₂ Cpy	-116.6	98	-142.5	122	
$N(CN)_2$	ру	-120.9	101.5	-144.8	126	
$N(CN)_2$	4-Me ₂ Npy	-127.4	107	-144.0	128	
NCO	4-MeO ₂ Cpy	-125.0	105	-150.0	130	
NCO	py	-129.0	108.5	-152.1	134	
NCO	4-Me ₂ Npy	-137.2	115.5	-151.7	136	

^a Solvent dichloromethane, temperature −60 °C.

^b δ relative to SnMe₄ (frequency of external standard at -25 °C).

^c Coupling constants in hertz, sign positive.

160 Laurence Carlton

REFERENCES

- 1. Crabtree RH. Angew. Chem. Int. Ed. Engl. 1993; 32: 789.
- (a) Schubert U, Kunz E, Harkers B, Willnecker J, Meyer J. J. Am. Chem. Soc. 1989; 111: 2572. (b) Schubert U, Schubert J. J. Organomet. Chem. 1992; 434: 169. Carlton L, Weber R, Levendis DC. Inorg. Chem. 1998; 37: 1264.
- 3. Carlton L. Inorg. Chem. 2000; 39: 4510.
- (a) Carlton L, Weber R. *Inorg. Chem.* 1996; 35: 5843.
 (b) Carlton L, Weber R. *Magn. Reson. Chem.* 1997; 35: 817.
- Bax A, Griffey RH, Hawkins BL. *J. Magn. Reson.* 1983; 55: 301
- Kidd RG, Goodfellow RJ. In NMR and the Periodic Table, Harris RK, Mann BE (eds). Academic Press: London, 1978; 249
- Mann BE. In *Transition Metal NMR*, Pregosin PS (ed). Elsevier: Amsterdam, 1991; 191.
- 8. Wrackmeyer B. Annu. Rep. NMR Spectrosc. 1985; 16: 73.