Synthesis and characterization of novel chelated dimethylamino lithium alkoxides: molecular structures of $[1-\text{LiOC}(C_6H_{11})_2-2-\text{NMe}_2C_6H_4]_2$ and [1-LiOCPh₂CH₂-2-NMe₂C₆H₄]₂

Harbi Tomah Al-Masri, Joachim Sieler and Evamarie Hey-Hawkins*

Institut für Anorganische Chemie der Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany

Received 25 June 2002; Revised 15 July 2002; Accepted 26 July 2002

From the reaction of $1\text{-HOCPh}_2\text{-}2\text{-NMe}_2C_6H_4$ (1), $1\text{-HOC}(C_6H_{11})_2\text{-}2\text{-NMe}_2C_6H_4$ (2) and 1-HOCPh₂CH₂-2-NMe₂C₆H₄ (3) with *n*-BuLi in diethyl ether, the solvent-free chelated dimethylamino lithium alkoxides $[1-\text{LiOCPh}_2-2-\text{NMe}_2\text{C}_6\text{H}_4]_2$ (4), $[1-\text{LiOC}(\text{C}_6\text{H}_{11})_2-2-\text{NMe}_2\text{C}_6\text{H}_4]_2$ (5) and [1-LiOCPh₂CH₂-2-NMe₂C₆H₄]₂ (6) were obtained. The lithium alkoxides 4-6 were characterized by ¹H, ⁷Li, and ¹³C NMR spectroscopy. Crystal structure determinations of 5 and 6 were carried out. Compounds 5 and 6 are examples of structurally characterized solvent-free chelated dimethylamino lithium alkoxides and 6 is a rare example of this type containing a seven-membered ring. Copyright © 2002 John Wiley & Sons, Ltd.

INTRODUCTION

The first work on lithium alkoxides dates back to Chablay. 1 Knowledge about structures and reactivities of these compounds is limited, even though lithium alkoxides have been employed as catalysts in polymerization reactions since at least 1960² and in industrial processes.^{2,3} Power and coworkers obtained the first detailed crystal structure of a lithium alkoxide in 1983, i.e. a THF-solvated dimer of lithium tert-butoxide.4 Internal coordination by oxygen,5 nitrogen, $^{6-13}$ phosphorus, 14,15 sulfur, 16 π -systems, $^{16-18}$ and cyclopropyl groups¹⁹ have been identified in lithium alkoxides and show the diversity of the compounds. X-ray, NMR, and other techniques have confirmed a variety of different aggregate sizes of lithium alkoxides. The sizes of aggregates formed depend strongly on the solvent used.²⁰ Thus, monomers, 6,21 dimers^{4,6,10,11,14,22} mers, 5-9,12,13,20,23-25 hexamers, 8,9,15,16,18,20,23-29 heptamers, 28 nonamers,²⁸ undecamers,⁴ tridecamers,²⁸ and sheet polymers³⁰⁻³² have been characterized.

In an extension of our studies on boron compounds, 33-35 we now report the successful high-yield synthesis and spectroscopic properties of the novel chelated dimethylamino lithium alkoxides [1-LiOCX-2-NMe₂C₆H₄]₂ [X = Ph₂ (4), $(C_6H_{11})_2$ (5), Ph_2CH_2 (6)] and the structurally characterized solvent-free chelated dimethylamino lithium alkoxides 5 and 6. Compounds 4–6 are of interest as starting materials for the synthesis of boron compounds in which a potentially intramolecularly coordinating tertiary amino group is present.

SYNTHESIS AND SPECTROSCOPIC **PROPERTIES**

Synthesis

We have found that the dimeric lithium derivatives 4-6 can be readily prepared [Eqns (1) and (2)] by addition of n-butyllithium in hexane to equimolar amounts of the organic ligands 1-HOCX-2-NMe₂C₆H₄ $[X = Ph_2 (1)]^{36,37}$ $(C_6H_{11})_2$ (2),³⁷ Ph₂CH₂ (3)^{37,38} in diethyl ether at -15°C. When the reaction was conducted in tetrahydrofuran, the reaction temperature had to be maintained at −15 °C in order to obtain the products 4-6. When the solution temperature was allowed to rise to 20 °C, a brown solution was obtained; the nature of the by-products formed has not yet been elucidated. However, when diethyl ether was employed as the solvent, yields of the solvent-free chelated lithium alkoxides 4-6 of approximately 90-98% were obtained after complete addition of *n*-butyllithium at -15 °C. Even when the solution was allowed to warm to 20°C, the yields were

^{*}Correspondence to: E. Hey-Hawkins, Institut für Anorganische Chemie der Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany. E-mail: hey@rz.uni-leipzig.de

Table 1. Selected bond lengths (Å) and bond angles (deg) for 5 and 6

	5		6
Li(1)—O(1)	1.802 (3)	Li(1)—O(1)	1.856 (5)
Li(1)—O(1a)	1.817 (3)	Li(1)—O(2)	1.855 (5)
Li(1)—N(1)	2.014 (3)	Li(1)—N(1)	2.075 (6)
Li(1)—O(1)—Li(1a)	78.54 (16)	Li(1)—O(1)—Li(2)	80.7 (2)
O(1)—Li(1)—O(1a)	101.46 (16)	O(1)—Li(1)—O(2)	98.1 (2)
N(1)—Li(1)—O(1)—Li(1a)	150.7 (2)	N(1)—Li(1)—O(1)—Li(2)	143.3 (3)
		Li(1)—O(1)—Li(2)—O(2)	-1.6 (3)

still as high as 80-93%.

 $1-HOCR_2-2-NMe_2C_6H_4 + n-BuLi \longrightarrow$

$$\frac{1}{2}[1-\text{LiOCR}_2-2-\text{NMe}_2\text{C}_6\text{H}_4]_2 \tag{1}$$

$$R = \text{Ph (4), Cy (5)}$$

 $1\text{-HOCPh}_2\text{CH}_2\text{-}2\text{-NMe}_2\text{C}_6\text{H}_4 + n\text{-BuLi} \longrightarrow$

$$\frac{1}{2}[1-\text{LiOCPh}_2\text{CH}_2-2-\text{NMe}_2\text{C}_6\text{H}_4]_2 \tag{2}$$

¹H and ¹³C NMR

In the ¹H NMR spectrum, the most noticeable signal is that due to the N(CH₃)₂ protons, which gives rise to one (for 6) or two singlets (for 4 and 5) at about 1.92 and 2.02 (4), 2.30 and 2.66 (5) and 2.24 ppm (6). These signals are at higher field than those observed for the precursors 1 (2.83 ppm), 2 (2.70 ppm) and 3 (2.80 ppm). In 5, the signals of the cyclohexyl protons are observed at 1.10-2.08 ppm. The ¹H NMR signals of the aromatic rings of 4-6 are in the expected chemical shift range (6.53-7.92 ppm), as is also observed for $1, 2^{37}$ and $3.^{37,38}$ In 6, the singlet at 3.65 ppm is assigned to the methylene protons.

The ¹³C NMR spectrum shows one (for **6**) or two signals (for 4 and 5) for the N(CH₃)₂ carbon atoms at 46.2 and 46.8 (4), 48.2 and 49.1 (5) and at 46.1 ppm (6). The C—O carbon atom gives a singlet at 85.6 (4), 89.0 (5) or 79.3 ppm (6). The resonances of the aromatic (120-156 ppm) and the cyclohexyl (27-47 ppm) carbon atoms are in the expected ranges observed for $1, 2^{37}$ and $3.^{37,38}$ For 6, the singlet at 45.7 ppm is assigned to the methylene carbon atom.

Both the ¹H and ¹³C NMR spectra of 4 and 5 indicate that in these molecules the two equivalent NMe2 substituents have inequivalent methyl groups. For 6, both the ¹H and ¹³C NMR spectrum show equivalent NMe2 and methylene protons. The diastereotopicity of the NMe2 groups in 4 and 5 and the equivalence of the NMe₂ and CH₂ protons in 6 indicates that Li-N coordination is present (within the NMR time scale), which results in puckered six-membered (for 4 and 5) or seven-membered (for 6) chelate rings and dimeric structures for 4-6 in solution.^{39,40}

⁷Li NMR

The ⁷Li NMR spectra of the lithium alkoxides 4 and 5 in C₆D₆ consist of single signals at about 2.6 (4) and 2.5 ppm (5). As the ¹H and ¹³C NMR spectra indicate that 4 and 5 do not dissociate into monomers but exist as dimers in solution, the two lithium atoms are isochronic. 39 In contrast, the 7 Li NMR spectrum of the lithium alkoxide 6 in C₆D₆ consists of two signals at about 1.1 and 2.0 ppm (ratio 1:4), which suggests an Li—N dissociation-association process (within the ⁷Li NMR time scale).

MOLECULAR STRUCTURE

Colorless crystals of 5 or 6 were obtained from toluene at 20°C; compound 5 crystallizes in the monoclinic space group $P2_1/n$, and 6 in the monoclinic space group $P2_1/c$. Selected interatomic distances and angles are collected in Table 1. The molecular structures are depicted in Figs 1 and 2.

As in solution, 5 and 6 form centrosymmetric dimers in the

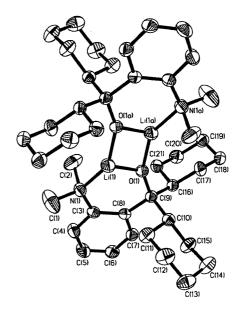
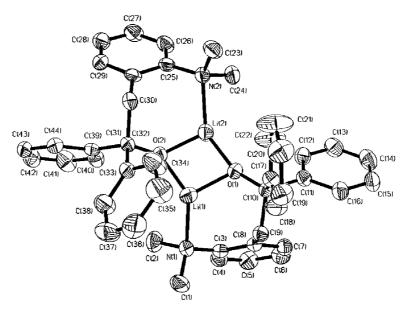



Figure 1. Molecular structure of 5 showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL-PLUS; XP).41 Hydrogen atoms are omitted for clarity.

Figure 2. Molecular structure of **6** showing the atom numbering scheme employed (ORTEP plot, 50% probability, SHELXTL-PLUS; XP). ⁴¹ Hydrogen atoms omitted for clarity.

solid state (Table 1, Figs 1 and 2) in which the central fourmembered Li₂O₂ ring is planar with smaller Li—O—Li and larger O-Li-O bond angles. The dimethylamino groups are coordinated to the lithium atoms [Li(1)—N(1) 2.014(3) Å (in 5), 2.075(6) Å (in 6)]. The Li—O bond lengths in 5 [Li(1)—O(1) 1.802(3) Å and Li(1)—O(1a) 1.817(3) Å] are comparable to those in $[\text{Li}(O-2,6^{-t}\text{Bu}_2\text{C}_6\text{H}_2)(\text{THF})]_2$ [av. Li—O 1.819(4) Å], 42 in which there is also a three-coordinate lithium atom, whereas related compounds with fourcoordinate lithium atoms exhibit longer Li-O bonds, e.g. $[\text{Li}(O-2,6^{-t}\text{Bu}_2\text{C}_6\text{H}_3)(\text{THF})_2]_2$ [av. Li—O 1.848(7) Å], ⁴³ $[\text{Li}(\text{O-2,6-}^{\text{t}}\text{Bu}_2\text{C}_6\text{H}_3)(\text{OEt}_2)_2]_2$ [av. Li—O 1.875(7) Å],⁴⁴ Å],⁴⁵ $[Li(OPh)(OEt_2)_2]_2$ [av. Li—O 1.875(12) $[\text{Li}(\text{O-2,6-tBu}_{2}\text{C}_{6}\text{H}_{2})(py)_{2}]_{2} \ [\text{av. Li--O} \ 1.851(2) \ \mathring{A}].^{42} \ \text{In} \ \textbf{6,}$ longer Li—O bonds [Li(1)—O(1) 1.856(5) Å and Li(1)—O(2) 1.855(5) Å] are also observed.

The bonding situation in lithium compounds is known to be dominated by electronic effects, 42 and a planar three-coordinated environment would be expected for the lithium atoms in **5** and **6**. However, the X-ray crystal structure determination shows a pyramidal environment of the three-coordinate lithium atoms: the sum of bond angles at lithium is 343° (in **5**) and 345° (in **6**), rather than the 360° expected for a trigonal-planar coordination. The pyramidal distortion of the environment of the lithium atoms in **5** and **6** and the out-of-plane bending of the nitrogen atoms can be attributed to repulsion between the dimethylamino and cyclohexyl (**5**) or phenyl (**6**) groups. 4

The structure of the central core of **5** and **6** is similar to that of (1R,2R,4S)-exo-2-[o-(dimethylaminomethyl)phenyl]-1,3,3-trimethylbicyclo[2.2.1]heptan-endo-2-olate. ¹¹ However,

in the latter, the central Li_2O_2 ring is puckered [Li(1) - O(3) - Li(2) - O(4)] dihedral angle 7°], and the dihedral angle of the Li(1) - O(3) - O(4) - N(5) group (24°) is larger (greater pyramidal distortion at lithium) than that observed for 5 and 6. The Li—O and Li—N bonds are longer $[\text{Li}(1) - \text{O}(3) \ 1.84 \ \text{Å}, \ \text{Li}(1) - \text{O}(4) \ 1.83 \ \text{Å}, \ \text{Li}(1) - \text{N}(5) \ 2.06 \ \text{Å}]$ than those of 5 but comparable to those of 6. The sum of bond angles at lithium is smaller (341°) than in 5 and 6. The syn arrangement of the two NMe₂ methyl groups with respect to the Li_2O_2 core differs from the anti alignment of the two NMe₂ methyl groups with respect to the Li_2O_2 core in 5 and 6. For dimeric methylzinc complexes of exo-3-(dimethylamino)isoborneol, Noyori and coworkers have also observed syn orientations for the homochiral and anti alignment for the heterochiral species. 46,47

The bond lengths and angles of the organic fragments of 5 and 6 are similar to those observed for the corresponding organic compounds 2 and 3.³⁷

EXPERIMENTAL DETAILS

All experiments were carried out under purified dry nitrogen. Solvents were dried and freshly distilled under nitrogen. The NMR spectra (in C_6D_6 , δ /ppm) were recorded with an AVANCE DRX 400 spectrometer (Bruker); 1H NMR (400 MHz): internal standard trace amount of protonated solvent, C_6D_6 ; ^{13}C NMR (100 MHz): internal standard solvent; 7Li NMR (155 MHz): external standard 1 M LiCl; Elemental analyses were obtained with a VARIO EL (Heraeus). The melting points were determined in sealed capillaries under argon and are uncorrected; 1-HOCPh₂-

 $2\text{-NMe}_2C_6H_4~(1),^{36}~1\text{-HOC}(C_6H_{11})_2\text{-}2\text{-NMe}_2C_6H_4~(2)^{37}~\text{and}~1\text{-HOCPh}_2CH_2\text{-}2\text{-NMe}_2C_6H_4~(3)^{37,38}~\text{were prepared by literature procedures}.$

Preparation of $[1-\text{LiOCPh}_2-2-\text{NMe}_2\text{C}_6\text{H}_4]_2$ (4)

A 150 ml Schlenk flask was charged with 1-HOCPh₂-2-NMe₂C₆H₄ (1) (0.48 g, 1.6 mmol) and diethyl ether (50 ml). Then n-butyllithium (one equivalent) was added dropwise at $-15\,^{\circ}$ C. The solution was warmed to room temperature and left stirring for about 1 h. The solvent was then removed and the remaining solid was washed with pentane to give the product in 90% yield. M.p. 177–178 °C. Anal. Found: C, 81.52; H, 6.45; N, 4.52. Calc. for $C_{42}H_{40}Li_2N_2O_2$: C, 81.55; H, 6.47; N, 4.53%. ¹H NMR: 1.92 (s, 6H, N(CH₃)₂), 2.02 (s, 6H, N(CH₃)₂), 6.77–7.61 (m, vbr, 28H, C_6H_4 and C_6H_5). ¹³C NMR: 46.2 (s, N(CH₃)₂), 46.8 (s, N(CH₃)₂), 85.6 (s, C—O), 123.5 (s, C4 in C_6H_4), 124.2 (s, C6 in C_6H_4), 125.0 (s, C3 in C_6H_4), 127.4 (s, C5 in C_6H_4), 128.0 (s, p-C in C_6H_5), 129.7 (s, o-C in C_6H_5), 129.9 (s, m-C in C_6H_5), 155.5 (s, C2 in C_6H_4), 155.6 (s, C1 in C_6H_4), 155.7 (s, ipso-C in C_6H_5). ⁷Li NMR: 2.6.

Phenyl ring numbering scheme:

$$\begin{array}{c|c}
3 & & \\
4 & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

Preparation of $[1-\text{LiOC}(C_6H_{11})_2-2-\text{NMe}_2C_6H_4]_2$ (5)

A similar procedure to that described for **4** was used here, except that 1-HOC(C_6H_{11})₂-2-NMe₂ C_6H_4 (**2**) (0.51 g, 1.6 mmol) was employed instead of **1** and colorless crystals were obtained from toluene at 20 °C in 80% yield. M.p. 170–172 °C. Anal. Found: C, 78.50; H, 9.95; N, 4.35. Calc. for $C_{42}H_{64}Li_2N_2O_2$: C, 78.51; H, 9.97; N, 4.36%. ¹H NMR: 1.10–2.08 (vbr, 44H, C_6H_{11}), 2.30 (s, 6H, N(CH₃)₂), 2.66 (s, 6H, N(CH₃)₂), 6.97–7.16 (m, 8H, C_6H_4). ¹³C NMR: 27.0 (s, C4 in Cy), 28.1 (s, C3/C5 in Cy), 29.2 (s, C2/C6 in Cy), 30.4 (s, C2/C6 in Cy), 46.4 (s, C1 in Cy), 46.5 (s, C1 in Cy), 48.2 (s, N(CH₃)₂), 49.1 (s, N(CH₃)₂), 89.0 (s, C—O), 123.3 (s, C4 in C_6H_4), 124.9 (s, C6 in C_6H_4), 127.0 (s, C3 in C_6H_4), 129.8 (s, C5 in C_6H_4), 140.1 (s, C2 in C_6H_4), 154.6 (s, C1 in C_6H_4). ⁷Li NMR: 2.5.

Preparation of $[1-\text{LiOCPh}_2\text{CH}_2-2-\text{NMe}_2\text{C}_6\text{H}_4]_2$ (6)

A similar procedure to that described for **4** was used here, except that 1-HOCPh₂CH₂-2-NMe₂C₆H₄ (**3**) (0.48 g, 1.5 mmol) was employed instead of **1** and colorless crystals were obtained from toluene at 20 °C in 93% yield. M.p. 140–145 °C. Anal. Found: C, 81.62; H, 6.76; N, 4.32. Calc. for C₄₄H₄₄Li₂N₂O₂: C, 81.65; H, 6.80; N, 4.33%. ¹H NMR: 2.24 (s, 12H, N(CH₃)₂), 3.65 (s, 4H, CH₂), 6.53–7.92 (m, vbr, 28H, C₆H₄ and C₆H₅). ¹³C NMR: 45.7 (s, CH₂), 46.1 (s, N(CH₃)₂), 79.3 (s, C—O), 120.8 (s, C4 in C₆H₄), 125.7 (s, C6 in C₆H₄),

Table 2. Crystal data and structure refinement for 5 and 6

	5	6
Formula	C ₄₂ H ₆₄ Li ₂ N ₂ O ₂	C ₄₄ H ₄₄ Li ₂ N ₂ O ₂
Formula weight	642.84	646.69
Temperature (K)	217(2)	223(2)
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/c$
a (Å)	9.569(2)	14.138(1)
b (Å)	20.273(4)	9.771(1)
c (Å)	10.292(2)	26.546(3)
α (°)	90	90
β (°)	111.062(4)	101.29(1)
γ (°)	90	90
$V(\mathring{A}^3)$	1863.2(6)	3596.2(6)
Z	2	4
$D_{\rm calcd}$ (g cm ⁻¹)	1.146	1.194
F(000)	704	1376
Crystal size (mm ³)	$0.3\times0.15\times0.15$	$0.3\times0.1\times0.1$
Absorption coefficient (mm ⁻¹)	0.068	0.071
No. of reflections collected	7706	20 403
No. of independent reflections	3601	7066
$R_{ m int}$	0.0315	0.0953
No. of parameters	345	628
$R_1 (I > 2\sigma(I))$	0.0467	0.0467
wR_2 (all data)	0.1289	0.1448
$(\Delta/\rho)_{\min} (e^- Å^{-3})$	0.213	0.179
$(\Delta/\rho)_{\rm max}$ (e ⁻ Å ⁻³)	-0.160	-0.187
Deposition number	CCDC 184760	CCDC 186419

126.9 (s, C3 in C_6H_4), 127.1 (s, C5 in C_6H_4), 128.3 (s, p-C in C_6H_5), 128.5 (s, o-C in C_6H_5), 134.2 (s, m-C in C_6H_5), 148.6 (s, C2 in C_6H_4), 148.7 (s, C1 in C_6H_4), 152.5 (s, ipso-C in C_6H_5). 7 Li NMR: 1.1, 2.0.

Data collection and structural refinement of 5 and 6

Crystallographic data are given in Table 2. Data [λ (Mo K α) = 0.71073 Å] were collected with a Siemens CCD (SMART) diffractometer. All observed reflections were used for determination of the unit cell parameters. Empirical absorption correction with SADABS.⁴⁸ The structure was solved by direct methods (SHELXTL PLUS⁴¹). Restrictions for **5** and **6**: lithium, nitrogen, oxygen and carbon atoms anisotropic. Hydrogen atoms located by difference maps and refined isotropically.

REFERENCES

- 1. Chablay ME. Ann. Chim. 1917; 8: 145.
- 2. Bradley DC, Mehrotra RC, Rothwell IP and Singh A. *Alkoxo and Aryloxo Derivatives of Metals*. Academic Press, London, 2001.
- 3. Mehrotra RC, Singh A and Sogani S. Chem. Soc. Rev. 1994; 23: 215.

- 4. Hvoslef J, Hope H, Murray BD and Power PP. J. Chem. Soc., Chem. Commun. 1983; 1438.
- Goldfuss B, Khan SI and Houk KN. Organometallics 1999; 18: 2927.
- 6. Armstrong DR, Davies JE, Davies RP, Raithby PR, Snaith R and Wheatley AEH. New J. Chem. 1999; 23: 35.
- 7. Clegg W, Liddle ST, Snaith R and Wheatley AEH. New J. Chem. 1998; 22: 1323.
- Thompson A, Corley EG, Huntington MF, Grabowski EJJ, Remenar JF and Collum DB. J. Am. Chem. Soc. 1998; 120: 2028.
- Nichols MA, McPhail AT and Arnett EM. J. Am. Chem. Soc. 1991; 113: 6222.
- 10. Armstrong DR, Davies RP, Raithby PR, Snaith R and Wheatley AEH. New J. Chem. 1999; 23: 499.
- 11. Goldfuss B and Eisenträger F. Aust. J. Chem. 2000; 53: 209.
- 12. Davies JE, Raithby PR, Snaith R and Wheatley AEH. J. Chem. Soc., Chem. Commun. 1997; 1721.
- Arnett EM, Nichols MA and McPhail AT. J. Am. Chem. Soc. 1990;
 112: 7059.
- Engelhardt LM, Harrowfield JM, Lappert MF, MacKinnon IA, Newton BH, Raston CL, Skelton BW and White AH. J. Chem. Soc., Chem. Commun. 1986; 846.
- 15. Feustel A and Müller G. J. Chem. Soc., Chem. Commun. 2001; 1024.
- Goldfuss B, Schleyer PvR and Hampel F. Organometallics 1997; 16: 5032.
- 17. Goldfuss B, Schleyer PvR and Hampel F. J. Am. Chem. Soc. 1997; 119: 1072.
- 18. Nilsson Lill SO, Arvidsson PI and Ahlberg P. Acta Chem. Scand. 1998; **52**: 280.
- Goldfuss B, Schleyer PvR and Hampel F. J. Am. Chem. Soc. 1996;
 118: 12 183.
- 20. Bains MS. Can. J. Chem. 1964; 42: 945.
- 21. Beck G, Hitchcock PB, Lappert MF and MacKinnon IA. *J. Chem. Soc., Chem. Commun.* 1989; 1312.
- 22. Adler M, Marsch M, Nudelman NS and Boche G. *Angew. Chem., Int. Ed. Engl.* 1999; **38**: 1261.
- Chisholm MH, Drake SR, Naiini AA and Streib WE. Polyhedron 1991; 10: 805.
- 24. Halaska V, Lochmann L and Lim D. Collect. Czech. Chem. Commun. 1968; 33: 3245.
- Thomas RD, Bott SG, Gravelle PW and Nguyen HD. Book of Abstracts, 215th ACS National Meeting, Dallas, 29 March-2 April INOR: 1998.

- 26. Hartwell GE and Brown TL. Inorg. Chem. 1966; 5: 1257.
- 27. Armstrong DR, Clegg W, Drummond AM, Liddle ST and Mulvey RE. J. Am. Chem. Soc. 2000; 122: 11 117.
- 28. Kahn JD, Haag A and Schleyer PvR. J. Phys. Chem. 1988; 92: 212.
- Braun M, Waldmüller D and Mayer B. Angew. Chem. 1989; 101: 953.
- 30. Wheatley PJ. J. Chem. Soc. 1960; 4270.
- 31. Wheatley PJ. Nature 1960; 185: 681.
- 32. Dunken H and Krausse J. Z. Chem. 1960; 1: 27.
- 33. Schlengermann R, Sieler J, Jelonek S and Hey-Hawkins E. *Chem. Commun.* 1997; 197.
- 34. Schlengermann R, Sieler J and Hey-Hawkins E. Main Group Chem. 1997; 2: 141.
- 35. Papp R, Sieler J and Hey-Hawkins E. Polyhedron 2001; 20: 1053.
- 36. Giumanini AG, Giumanini AB and Lepley AR. *Chim. Ind. (Milan)* 1969; **51**(2): 139.
- 37. Al-Masri HT, Sieler J, Lönnecke P, Blaurock S, Domasevitch K and Hey-Hawkins E. In preparation.
- 38. Ludt RE, Crowther GP and Hauser CR. *J. Org. Chem.* 1970; **35**: 1288.
- 39. Rietveld MHP, Wehman-Ooyevaar ICM, Kapteijn GM, Grove DM, Smeets WJJ, Kooijman H, Spek AL and van Koten G. *Organometallics* 1994; **13**: 3782.
- Van der Schaff PA, Jastrzebski JTBH, Hogerheide MP, Smeets WJJ, Spek AL, Boersma J and van Koten G. *Inorg. Chem.* 1993; 32: 4111.
- 41. SHELXTL PLUS, Siemens Analyt. X-ray Inst. Inc., 1990. XS: Program for Crystal Structure Solution, XL: Program for Crystal Structure Determination, XP: Interactiv Molecular Graphics.
- 42. Boyle TJ, Pedrotty DM, Alam TM, Vick SC and Rodriguez MA. *Inorg. Chem.* 2000; **39**: 5133.
- 43. Huffman JC, Geerts RL and Gaulton KG. J. Crystallogr. Spectrosc. Res. 1984; 14: 541.
- 44. Kociok-Köhn G, Pickardt J and Schumann H. Acta Crystallogr. Sect. C 1991; 47: 2649.
- 45. Watson KA, Fortier S, Murchie MP, Bovenkamp JW, Rodrigue A, Buchanan GW and Ratcliffe CI. *Can. J. Chem.* 1990; **68**: 1201.
- 46. Kitamura M, Yamakawa M, Oka H, Suga S and Noyori R. *Chem. Eur. J.* 1996; **2**: 1173.
- 47. Kitamura M, Okada S, Suga S and Noyori R. *J. Am. Chem. Soc.* 1989; **111**: 4028.
- 48. Sheldrick GM. SADABS a program for empirical absorption correction, University of Göttingen, 1998.