AOC

Crystallographic report

1,3-Bis[(trimethylsilylmethyl)dichlorostannyl]propane, [(Me₃SiCH₂)Cl₂Sn]₂(CH₂)₃

Dainis Dakternieks¹, Fong Sheen Kuan¹, Andrew Duthie¹ and Edward R. T. Tiekink²*

¹Centre for Chiral and Molecular Technologies, Deakin University, Geelong, Victoria 3217, Australia

Received 4 June 2001; Accepted 4 December 2001

The dinuclear molecule of $[(Me_3SiCH_2)Cl_2Sn]_2(CH_2)_3$ adopts an extended conformation and features distorted tetrahedral tin centres, with the greatest distortion manifested in the C-Sn-C angles of approximately 128° . The distortions are ascribed to the influence of intermolecular $Sn\cdots Cl$ interactions. Copyright © 2002 John Wiley & Sons, Ltd.

KEYWORDS: 1,3-bis[(trimethylsilylmethyl)dichlorostannyl]propane; crystal structure; organotin; Sn···Cl interactions

COMMENT

The title compound (I) is a synthetic precursor for propylene-bridged double ladder molecules. 1 A C_2 Cl $_2$ donor set is found for both independent tin centres in the crystal structure. The greatest deviation from the ideal geometry is found in the C-Sn-C angle of $128.0(5)^\circ$ for Sn1 and $129.1(6)^\circ$ for Sn2. In the lattice, molecules associate via weak $Sn\cdots Cl$ interactions that result in the formation of $(Sn\cdots Cl)_2$ rectangles. In this way, Sn1 is 3.319(5) Å from Cl3 (symmetry operation: 0.5+x, 0.5-y, 1-z) and Sn2 is 3.510(5) Å from Cl2 (symmetry operation: -1/2+x, 1/2-y, 1-z).

EXPERIMENTAL

Synthesis

To a solution of [(Me₃SiCH₂)Ph₂Sn]₂(CH₂)₃ (27.1 g, 35.6 mmol; prepared according to a literature procedure¹) in chloroform (100 ml) was added excess concentrated HCl (200 ml, 32%). The reaction mixture was stirred and maintained at 70°C for 24 h. The organic layer was separated and the aqueous layer extracted with chloroform (3 × 100 ml). The combined organic extracts were dried (CaCl₂) and the solvent was removed in vacuo. The residue was crystallized from chloroform/hexane (1/2.5) to afford the title compound as colourless crystals (16.5 g, 78 %); m.p. 93-94 °C (lit. 88-90°C¹). ¹H NMR (CDCl₃, δ ppm): 0.18 (s, 18H, Me₃Si), 0.89 (s, 4H, SiCH₂), 1.83 [t, 4H, SnCH₂, $^{2}J(^{1}H^{-117/119}Sn) = 88/92 Hz$], 2.32 (quint, 2H, CH₂). 13 C NMR (CDCl₃, δ ppm): 1.24 [SiMe₃, 3 J(13 C- 117 / 119 Sn) = 26 Hz, 1 J(13 C- 29 Si) = 52 Hz], 12.31 [SiCH₂, 1 J(13 C- 117 / 119 Sn) = 281/294 Hz], 20.90 [2 J(13 C- $^{117/119}$ Sn) = 33 Hz], $[^{1}I(^{13}C-^{117/119}Sn) = 430/450 \text{ Hz},$ $^{3}I(^{13}C-^{117/119}Sn) = 98/103 Hz$]. 119 Sn NMR (CDCl₃, δ ppm): 132.0 ppm. Anal. Found: C, 22.0; H, 4.6. Calc. for C₁₁H₂₈Cl₂Si₂Sn₂: C, 22.2; H, 4.7%.

*Correspondence to: E. R. T. Tiekink, Department of Chemistry, National University of Singapore, Singapore 117543. E-mail: chmtert@nus.edu.sg

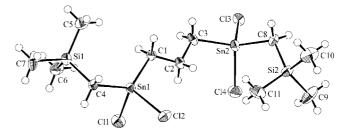


Figure 1. Molecular structure of I. Key geometric parameters: Sn1—Cl1 2.373(5), Sn1—Cl2 2.357(4), Sn1—Cl 2.127(14), Sn1—C4 2.102(13), Sn2—Cl3 2.370(4), Sn2—Cl4 2.359(5), Sn2—C3 2.119(15), Sn2—C8 2.110(15) Å, Cl1—Sn1—Cl2 97.37(16), Cl1—Sn1—C1 102.9(4), Cl1—Sn1—C4 104.1(4), Cl2—Sn1—C1 109.4(4), Cl2—Sn1—C4 110.1(4), C1—Sn1—C4 128.0(5), Cl3—Sn2—Cl4 97.6(2), Cl3—Sn1—C3 105.5(5), Cl3—Sn1—C8 107.0(4), Cl4—Sn1—C3 105.1(5), Cl4—Sn1—C8 108.1(4), C3—Sn2—C8 129.1(6)°.

Crystallography

Intensity data for I were collected at 173 K on a Rigaku AFC7R diffractometer for a colourless crystal 0.07 \times 0.19 \times 0.36 mm³, C₁₁H₂₈Cl₄Si₂Sn₂, M = 595.7, orthorhombic, $P2_12_12_1$, a = 12.195(12), b = 25.689(14), c = 7.230(7) Å, V = 2265(3) ų, Z = 4; 2973 unique data ($\theta_{\rm max}$ = 27.5°); 2504 data with I \geq 2 σ (I); (obs.) R = 0.048; (all data) wR = 0.185; Flack parameter: 0.10(10); $\rho_{\rm max}$ = 1.30 e Å $^{-3}$. Programs used: teXsan, DIRDIF, DIFABS, SHELXL, and ORTEP. CCDC deposition number: 185038.

Acknowledgements

The Australian Research Council is thanked for support.

REFERENCES

 Dakternieks D, Jurkschat K, Schollmeyer D and Wu H. Organometallics 1994; 13: 4121.

²Department of Chemistry, The University of Adelaide, South Australia 5005, Australia