Crystallographic report

1,4-Bis[(phenyldichlorostannyl)ethyl]benzene, p-(Cl₂PhSnCH₂CH₂)₂C₆H₄

Dainis Dakternieks¹, Andrew Duthie¹ and Edward R. T. Tiekink²*

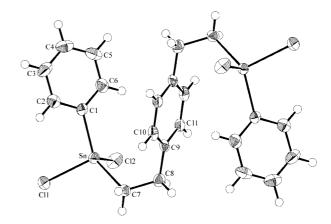
¹Centre for Chiral and Molecular Technologies, Deakin University, Geelong, Victoria 3217, Australia

Received 28 May 2002; Revised 3 June 2002; Accepted 4 June 2002

An 'S' conformation, stabilized by intramolecular $C-H\cdots\pi$ interactions, is found in centrosymmetric p-($Cl_2PhSnCH_2CH_2$) $_2C_6H_4$. The dinuclear species features distorted tetrahedral tin centres, with the greatest distortion manifested in the C-Sn-C angle of 134.32(16)°. Copyright © 2002 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; organotin; $C-H\cdots\pi$ interactions

COMMENT


The structure of the title compound was determined in connection with a wider study of rigid spacer-linked tetraorganodistannoxanes. In the centrosymmetric structure of p-(Cl₂PhSnCH₂CH₂)₂C₆H₄ (I); Fig 1, each of the tin centres exists in a distorted tetrahedral geometry defined by a C₂Cl₂ donor set. The greatest deviation from the ideal geometry is found in the C-Sn-C angle of 134.32(16)°. The molecule adopts an 'S' configuration; the reason for this is not immediately apparent. There are no significant intra- or inter-molecular $\pi \cdots \pi$ interactions that may be invoked to account for this arrangement. However, there are intramolecular $C - H \cdot \cdot \pi$ interactions² so that C6-H is 3.08 Å from the ring centroid of the central phenyl ring with an angle of 108° subtended at H. Though these data may not be convincing at first sight, it is noteworthy that the C6-H atom is directed towards the mid-point of the C10-C11ⁱ. Thus, the distance between the H6 atom and the mid-point of C10-C11ⁱ is 2.88 Å with an angle at H of 131°; symmetry operation i: -x, -y, 1-z.

EXPERIMENTAL AND RESULTS

A solution of Ph_3SnH (12.37 g, 35.23 mmol) and AIBN (0.29 g, 1.76 mmol) in benzene (50 ml) was added dropwise to a solution of

*Correspondence to: E. R. T. Tiekink, Department of Chemistry, National University of Singapore, Singapore 117543, Singapore. E-mail: chmtert@nus.edu.sg
Contract/grant sponsor: Australian Research Council.

pure 1,4-divinylbenzene³ (2.29 g, 17.62 mmol) in benzene (50 ml) at reflux. Stirring was continued at reflux for 2 h after complete addition. After removing the benzene *in vacuo*, the crude product was precipitated from dichloromethane–hexane to give *p*-(Ph₃SnCH₂CH₂)₂C₆H₄ as a white powder (14.54 g, 99%), m.p. 172-174 °C. ¹H NMR (299.8 MHz, CDCl₃): δ = 2.04 [t, 4H, 2 J(1 H- $^{117/119}$ Sn) = 54, α -CH₂], 3.19 [t, 4H, 3 J(1 H- $^{117/119}$ Sn) = 50, β -CH₂], 7.25 (s, 4H, C₆H₄), 7.45–7.90 (m, 30H, Ph); 13 CC(1 H) NMR (75.4 MHz, CDCl₃): δ = 13.10 [1 J(13 C- $^{117/119}$ Sn) = 366/383, α -CH₂], 32.06 [2 J(13 C- $^{117/119}$ Sn) = 18 β -CH₂] 127.91 (C₆H₄), 128.43 [3 J(13 C- $^{117/119}$ Sn) = 18

Figure 1. Molecular structure of **I**. Key geometric parameters: Sn—Cl1 2.3546(11), Sn—Cl2 2.3650(14), Sn—C1 2.116(4), Sn—C7 2.133(4) Å, Cl1—Sn—Cl2 102.25(5), Cl1—Sn—C1 103.49(12), Cl1—Sn—C7 107.07(12), Cl2—Sn—C1 104.62(12), Cl2—Sn—C7 101.13(13) and C1—Sn—C7 134.32(16)°.

²Department of Chemistry, The University of Adelaide, South Australia 5005, Australia

 $^{117/119}$ Sn) = 48, Ph_m], 128.81 [4 J(13 C- $^{117/119}$ Sn) = 11, Ph_p], 137.01 $[^{2}J(^{13}C_{-}^{117/119}Sn) = 36, Ph_{o}], 138.67 [^{1}J(^{13}C_{-}^{117/119}Sn) = 468/489,$ Ph_i , 142.42 [${}^{3}J({}^{13}C-{}^{117/119}Sn) = 60$, C_6H_4]; ${}^{119}Sn$ NMR (111.9 MHz, CDCl₃): $\delta = -100.2$. Anal. Found: C, 66.15; H, 4.72. Calc. for C₄₆H₄₂Sn₂: C, 66.39; H, 5.09%.

Conc. HCl (2 ml) was added to p-(Ph₃SnCH₂CH₂)₂C₆H₄ (0.20 g, 0.24 mmol) and stirred at 60°C overnight. The crude product was extracted with dichloromethane (5 ml), dried over Na₂SO₄, filtered, and the solvent removed in vacuo. Crystallization from chloroform gave I as colourless crystals (0.13 g, 81%), m.p. 143–145 $^{\circ}$ C. 1 H NMR (299.8 MHz, CDCl₃): $\delta = 2.30$ [t, 4H, ${}^{2}J({}^{1}H-{}^{117/119}Sn) = 61/63$, α -CH₂], 3.13 [t, 4H, ${}^{3}J({}^{1}H-{}^{117/119}Sn) = 124/130$, β -CH₂], 7.15 (s, 4H, C₆H₄), 7.25–7.50 (m, 10H, Ph); ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (75.4 MHz, CDCl₃): δ = 28.09 $[^{1}J(^{13}C^{-117/119}Sn) = 485/507, \alpha - CH_{2}], 30.27 [^{2}J(^{13}C^{-117/119}Sn) = 31, \beta - CH_{2}]$ CH₂], 128.72 (C₆H₄), 129.31 $[{}^{3}J({}^{13}C-{}^{117/119}Sn) = 81$, Ph_m], 131.35 $[^{4}J(^{13}C^{-117/119}Sn) = 17, Ph_{p}], 134.46 [^{2}J(^{13}C^{-117/119}Sn) = 64, Ph_{o}],$ 139.09 (Ph_i), 140.94 $[{}^{3}J({}^{13}C-{}^{117/119}Sn) = 71$, $C_{6}H_{4}]$; ${}^{119}Sn$ NMR (111.9 MHz, CDCl₃): δ = 38.8. Anal. Found: C, 39.55; H, 3.30. Calc. for C₂₂H₂₂Cl₄Sn₂: C, 39.70; H, 3.33%.

Intensity data for I were collected at 173 K on a Rigaku AFC7R

diffractometer for a colourless crystal $0.08 \times 0.16 \times 0.36 \text{ mm}^3$. $C_{22}H_{22}Cl_4Sn_2$, M = 665.6, orthorhombic, *Pbca*, a = 20.739(4), b = 16.054(9), c = 7.140(1) Å, V = 2377(1) Å³, Z = 4, 2730 unique data $(\theta_{\text{max}} 27.5^{\circ})$, 1579 data with $I \ge 2\sigma(I)$, R(obs.) = 0.026, wR(alldata) = 0.062, $\rho_{\rm max}$ = 0.48 e⁻ Å⁻³. Programs used: teXsan, DIRDIF, DIFABS, SHELXL, PLATON, and ORTEP. CCDC deposition number: 185038.

Acknowledgements

The Australian Research Council is thanked for support.

REFERENCES

- 1. Dakternieks D, Duthie A, Zobel B, Jurkschat K, Schürmann M and Tiekink ERT. Organometallics 2002; 21: 647.
- 2. Jennings WB, Farrell BM and Malone JF. Acc. Chem. Res. 2001; 34:
- 3. Wiley RH, Jin JI and Kamath Y. J. Polym. Sci., Polym. Chem. Ed. 1968; 6: 1065.