Crystallographic report

1,4-Bis[bis(trimethylsilyl)methyl-dichlorostannylmethyldimethylsilyl]benzene, p-{[(Me₃Si)₂CH]Sn(Cl)₂CH₂SiMe₂}₂C₆H₄

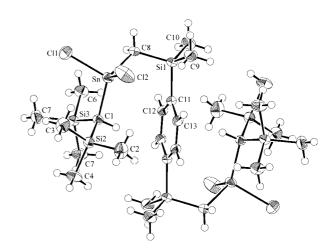
Dainis Dakternieks¹, Bernhard Zobel¹ and Edward R. T. Tiekink²*

Received 28 May 2002; Revised 3 June 2002; Accepted 4 June 2002

The dinuclear molecule of p-{[(Me₃Si)₂CH]Sn(Cl)₂CH₂SiMe₂]₂C₆H₄ is centrosymmetric and adopts an 'S' conformation that is stabilized by intramolecular C-H $\cdots\pi$ interactions. The tin atom exists within a distorted tetrahedron defined by a C₂Cl₂ donor set. Copyright © 2002 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; organotin; $C-H\cdots\pi$ interactions

COMMENT


The title compound, p-{[(Me₃Si)₂CH]Sn(Cl)₂CH₂Si-Me₂}₂C₆H₄ (I), is a synthetic precursor for spacer-bridged double ladder molecules. The crystal structure determination shows an 'S' conformation for the centrosymmetric molecule (Fig. 1). This is stabilized by the formation of two intramolecular $C-H\cdots\pi$ interactions involving the C1-H and the central aromatic ring. Thus, the distance between the H and the ring centroid is 2.75 Å and the angle subtended at H is 161° . A C_2 Cl₂ donor set is found for the tin atom with the widest angle of $124.29(10)^{\circ}$ being subtended by the organic groups.

EXPERIMENTAL AND RESULTS

Compound I was prepared from 1,4-bis[bis(trimethylsilyl)methyldiphenylstannylmethyldimethylsilyl]benzene (II) as described. Preparation of II: to a solution of LiCH(SiMe₃) $_2$ ³ in 23 ml Et₂O (c = 0.4 mol l⁻¹) was added at room temperature a solution of 1,4-bis(iododiphenylstannylmethyldimethylsilyl)benzene¹ (4.43 g, 4.35 mmol) in 40 ml Et₂O over 40 min. The reaction mixture was stirred overnight and hydrolysed with saturated NH₄Cl solution. The organic layer was washed twice with water and dried over Na₂SO₄. After filtration, the organic solvent was evaporated *in vacuo* and the resulting yellow oil was kept 1 h at 130°C and 10⁻³ Torr to

Contract/grant sponsor: Australia Research Council.

remove all volatile by-products. This gave 4.32 g crude product, which was used without further purification. $^{13}\mathrm{C}$ NMR (75.44 MHz, CDCl₃): δ CH -2.31, $^{1}J(^{117/119}\mathrm{Sn}^{-13}\mathrm{C})=246/257$, $^{1}J(^{29}\mathrm{Si}^{-13}\mathrm{C})=50$; SiMe₂ 0.07; CH₂ 1.61, $^{1}J(^{117/119}\mathrm{Sn}^{-13}\mathrm{C})=170/179$, $^{1}J(^{29}\mathrm{Si}^{-13}\mathrm{C})=40$; SiMe₃ 3.62 $^{3}J(^{117/119}\mathrm{Sn}^{-13}\mathrm{C})=16$, $^{1}J(^{29}\mathrm{Si}^{-13}\mathrm{C})=51$; C_m 128.10; C_p 128.42; C_{oSi} 132.57; C_o 136.90, $^{2}J(^{117/119}\mathrm{Sn}^{-13}\mathrm{C})=36$; C_{iSi} 141.73; C_i 141.88, $^{1}J(^{117/119}\mathrm{Sn}^{-13}\mathrm{C})=457/478$. $^{29}\mathrm{Si}$ NMR (59.6 MHz, CDCl₃): $\delta-2.01$ (s, $^{2}J(^{117/119}\mathrm{Sn}^{-29}\mathrm{Si})=22$, SiMe₂); 1.57 (s, $^{2}J(^{117/119}\mathrm{Sn}^{-13}\mathrm{C})=23$

Figure 1. Molecular structure of **I**. Key geometric parameters: Sn—Cl1 2.3471(9), Sn—Cl2 2.3482(9), Sn1—Cl 2.130(2), Sn—C8 2.119(3) Å, Cl1—Sn—Cl2 100.40(4), Cl1—Sn—Cl 108.01(7), Cl1—Sn—C8 105.09(8), Cl2—Sn—Cl 111.68(7), Cl2—Sn—C8 104.68(8), Cl—Sn—C8 124.29(10)°.

¹Centre for Chiral and Molecular Technologies, Deakin University, Geelong, Victoria 3217, Australia

²Department of Chemistry, The University of Adelaide, South Australia 5005, Australia

^{*}Correspondence to: E. R. T. Tiekink, Department of Chemistry, National University of Singapore, Singapore 117543, Singapore. E-mail: chmtert@nus.edu.sg

 119 Sn- 29 Si) = 31, 1 J(13 C- 29 Si) = 51, SiMe₃) 119 Sn NMR (111.85 MHz, CDCl₃): $\delta - 55.2 \, ^{1}$ J(13 C- 119 Sn) = 479, 1 J(13 C- 119 Sn) = 256.

Preparation of I: to a magnetically stirred solution (0°C) of II (4.32 g, 3.99 mmol) in 50 ml acetone was added dropwise a solution of $HgCl_2$ (5.50 g, 20.26 mmol) in 50 ml acetone over 30 min. The reaction mixture was stirred for 7 days and the acetone removed in vacuo. Hexane (100 ml) was added and the suspension was refluxed for 10 min. The remaining PhHgCl was removed by hot filtration and the organic solvent evaporated in vacuo to give 3.74 g yellow oil. This was recrystallized from $CHCl_3$ (15 ml) to give 1.96 g (51%) of I, m.p. 133–136 °C. ¹H NMR (299.98 MHz, CDCl₃): δ – 0.11 (s, 1H, ${}^{2}J({}^{117/119}Sn-{}^{1}H) = 101/106$, CH); 0.16 (s, 18H, SiMe₃); 0.51 (s, 6H, SiMe₂); 1.00 (s, 2H, ${}^{2}J({}^{117/119}Sn-{}^{1}H) = 84/89$, CH₂); 7.59 (s, 2H, C₆H₄). ¹³C NMR (75.44 MHz, CDCl₃): δ SiMe₂ – 0.67 ³J(^{117/119}Sn-¹³C) = 20, ${}^{1}J({}^{29}Si^{-13}C) = 55$; SiMe₃ 2.77 ${}^{3}J({}^{117/119}Sn^{-13}C) = 27$, ${}^{1}J({}^{29}Si^{-13}C) = 52$; CH 14.81, ${}^{1}J({}^{117/119}Sn - {}^{13}C) = 314/329$, ${}^{1}J({}^{29}Si - {}^{13}C) = 46$; CH₂ 18.24, ${}^{1}J({}^{117/119}Sn - {}^{13}C) = 204/213, {}^{1}J({}^{29}Si - {}^{13}C) = 35; C_{o} 133.21; C_{i} 140.66.$ $^{119}\mathrm{Sn}$ NMR (111.85 MHz, CDCl3): δ 123.7 ppm.

Intensity data for I were collected at 173 K on a Rigaku AFC7R

diffractometer for a colourless crystal $0.23 \times 0.23 \times 0.29 \text{ mm}^3$. $C_{26}H_{58}Cl_4Si_6Sn_2$, M = 918.5, monoclinic, $P2_1/c$, a = 11.380(1), b = 11.209(2), c = 17.133(1) Å, β = 100.968(8)°, V = 2145.6(4) ų, Z = 2, 4927 unique data (θ_{max} 27.5°), 3786 data with $I \ge 2\sigma(I)$, R(obs.) = 0.026, wR(all data) = 0.072, ρ_{max} = 0.38 e $^-$ Å $^{-3}$. Programs used: teXsan, DIRDIF, SHELXL, PLATON, and ORTEP. CCDC deposition number: 186483.

Acknowledgement

The Australian Research Council is thanked for support.

REFERENCES

- 1. Dakternieks D, Duthie A, Zobel B, Jurkschat K, Schürmann M and Tiekink ERT. *Organometallics* 2002; **21**: 647.
- 2. Jennings WB, Farrell BM and Malone JF. Acc. Chem. Res. 2001; 34: 885
- 3. Davidson PJ, Harris DH and Lappert MF. J. Chem. Soc., Dalton Trans. 1976; 2268.