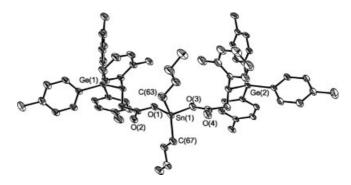
$Published\ online\ in\ Wiley\ InterScience\ (www.interscience.wiley.com).\ DOI:10.1002/aoc.493$

Crystallographic report

Bis[3-(tri-p-tolyl)germyl-3-(o-tolyl)-propionato]dibutyltin(IV)

Imtiaz-ud-Din¹, M. Mazhar¹*, Sarim Dastgir¹, Mary F. Mahon² and Kieran C. Molloy²

¹Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan


Received 8 April 2003; Revised 18 April 2003; Accepted 22 April 2003

The crystal structure of $[(p-CH_3C_6H_4)_3GeCH(o-CH_3C_6H_4)CH_2CO_2]_2Sn(C_4H_9)_2$ consists of a monomer with the atoms of tin and germanium both occupying tetrahedral geometries. However, the tin atom is distorted towards a skew trapezoidal bipyramid geometry as a result of weakly chelating carboxylate ligands. Copyright © 2003 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; diorganotindicarboxylates; germanium

COMMENT

Diorganotin compounds containing germanium as a part of the carboxylate ligand have been synthesized in a continuation of our previous work.^{1,2} The structure of bis[3-(trip-tolyl)germyl-3-(o-tolyl)-propionato|dibutyltin(IV) has been determined. The structure consists of a monomer with the germanium occupying a tetrahedral geometry (Fig. 1). The average bond angle around the germanium atom is 108.5°. The tin atom is chelated by the two asymmetrically coordinating carboxylate ligands and two butyl groups with an average bond angle around tin of 102.0°, which depicted distorted tetrahedral geometry. There is an indication of weak interactions of tin with O(2) [2.541(2) Å] and O(4) [2.694(3) Å], as manifested by the opening of the C(63)–Sn(1)–C(67) angle to 138.41(14)°. The tin atom geometry is thus best described as based on a skew trapezoidal bipyramid geometry.³ The bond lengths of Sn(1)-O(1) and Sn(1)-O(3) are identical [2.106(2) Å] and the Sn(1)-C(63)[2.121(4) Å] and Sn(1)-C(67)[2.127(3) Å] bonds are normal. The weakly hexa-coordinated tin appears to be present in solution as indicated by the upfield ¹¹⁹Sn NMR resonance at −147.2 ppm (CDCl₃).

Figure 1. Molecular structure of bis[3-(tri-*p*-tolyl) germyl-3-(o-tolyl)-propionato]dibutyltin(IV). Selected geometric parameters: Ge(1)-C(11) 1.943(3) Å; O(1)-Sn(1)-O(3) 80.29(9), O(1)-Sn(1)-C(63) 100.63(12), O(1)-Sn(1)-C(67) 107.04(12), O(3)-Sn(1)-C(63) 112.84(12), O(3)-Sn(1)-C(67) 102.10(12)°.

EXPERIMENTAL

Stoichiometric amounts of [3-(tri-p-tolyl)germyl-3-o-tolylpropanoic acid (1.02 g, 2.0 mmol) and dibutyltin oxide (0.25 g, 1.0 mmol) were suspended in toluene (50 cm³) and refluxed for 8 h. Water formed during the reaction was removed by a Dean and Stark apparatus; toluene was subsequently removed under vacuum and the crude product was recrystallized from chloroform/petroleum ether (3:1) to yield colourless crystals. M.p. 208–209 °C. IR (KBr, cm¹) ν (COO)_{asy} 1625, ν (COO)_{sym} 1376, ν (Sn–O) 489, ν (Sn–C) 589, ν (Ge–C) 670. Crystallographic details: intensity data were collected at 150 K on a Nonius Kappa CCD diffractometer for a crystal 0.10 × 0.15 mm³. C₇₀H₈₀Ge₂O₄Sn, M = 1249.18, triclinic, $P\overline{1}$, a = 13.5560(3), b = 13.7670(3), c = 18.9780(4) Å, α = 97.456(1), β =

²Department of Chemistry, University of Bath, Bath BA2 7AY, UK

^{*}Correspondence to: M. Mazhar, Department of Chemistry, Quaidi-Azam University, Islamabad 45320, Pakistan. E-mail: mazhar42pk@yahoo.com

94.669(1), $\gamma=114.948(1)^\circ$, V=3147.4(1) ų, Z=2, $\theta_{\rm max}=27.5^\circ$, 14342 independent reflections, $R_1=0.068$ (all data), $wR_2=0.103$ (all data). Programs used: SHELXS86, SHELXS97, ORTEX95. CCDC deposition number 200 434.

- 2. Hans K, Pervaz M, Mahboob S, Imtiaz-ud-Din, Mazhar M, Ali S. Acta Crystallogr. Sect. C 2002; 58: m559.
- 3. Tiekink ERT. Trends Organomet. Chem. 1994; 1: 71.

REFERENCES

1. Imtiaz-ud-Din, Mazhar M, Ali S, Dastgir S, Molloy KC, Mahon MF. Main Group Met. Chem. 2002; 25: 315.