Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.424

Short communication

Thermal stability of the diazohydroborate $[1-N_2B_{10}H_9]^-$: degradation to $[B_{20}H_{18}]^{2-}$ anion

Daoud Naoufal^{1,2}*, Bernard Bonnetot² and Henri Mongeot²

¹Laboratoire de Chimie Analytique, Matériaux, surfaces et Interfaces CHAMSI, Université Libanaise, Faculté des Sciences I, Hadath,

Received 22 November 2002; Revised 20 December 2002; Accepted 8 January 2003

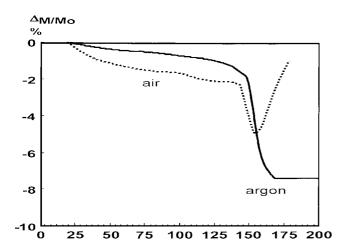
The thermal stability of the monodiazohydroborate NMe₄[1-N₂B₁₀H₉] was studied by thermogravimetric analysis. Under two different atmospheres (air and argon), the thermal decomposition starts at a temperature between 140 and 160 °C. The decomposition residue obtained was separated on a silica gel column. 11 B NMR, IR and electrospray mass spectroscopy analyses of the different fractions separated showed that the above decomposition produces (NMe₄)₂[B₂₀H₁₈] as major product (90%), along with smaller amounts of residual NMe₄[1-N₂B₁₀H₉] (5%), (NMe₄)₂[B₁₂H₁₂] and boric acid. Copyright © 2003 John Wiley & Sons, Ltd.

KEYWORDS: hydroborate; decaborate; diazonium salt; TGA

Monodiazohydroborate anion [1-N₂B₁₀H₉]⁻ is an important reagent in organic synthesis. The diazo group is the only known one to be substituted by a nucleophile L. This substitution reaction takes place at a temperature of 120 °C to produce [1-LB₁₀H₉]⁻.^{1,2} In addition, this substitution produces a variety of products of the type [1-LB₁₀H₉] that have very important applications as active agents in boron neutron capture therapy³ and as potential extractants of radioactive cations in nuclear fuels reprocessing.4

We reported the substitution of the diazo group of [1-N₂B₁₀H₉]⁻ by a nucleophilic ligand L (amines or phosphines) at a temperature greater than $120 \,^{\circ}\text{C.}^{5}$ When $[1-N_{2}B_{10}H_{9}]^{-}$ was reacted with bulky tertiary amines or tertiary phosphines, the major product obtained was $[B_{20}H_{18}]^{2-.5}$ This product is prepared in a high yield with aqueous ferric or ceric ion oxidation of $[B_{10}H_{10}]^{2-.6}$ Oxidation of $[B_{10}H_{10}]^{2-}$ by copper(II) chloride led to products that were more difficult to analyze.⁷ The oxidation with carbon monoxide or carbon dioxide produced $[(NO)B_{20}H_{18}]^{3-}$, whose structure has been studied.8 The oxidizing agents Fe(NO₃)₂ produced $[(NO)B_{20}H_{18}]^{3-}$, FeCl₃ led to [1,6,8-Cl₃ $B_{10}H_7]^{2-}$ and [1,6-(or 2,4-) $Cl_2B_{10}H_8$]²⁻, and $KClO_3$ resulted in $[Cl_6B_{10}H_4]^{2-}$

E-mail: d-nawfal@inco.com.lb

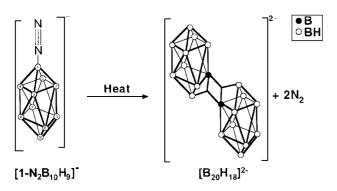

respectively.9 Oxidization by permanganate ions MnO₄⁻ did not produce $[B_{20}H_{18}]^{2-}$ because decomposition resulted in boric acid. 10 This decomposition was related to the formation of the derivatives $[(OH)_x B_{10} H_{10-x}]^{2-}$, whose hydroxyl groups destabilize the B₁₀ cage to form the boric acid. ¹¹ [B₂₀H₁₈]² was prepared by electrochemical oxidation of $[B_{10}H_{10}]^{2-1.12}$

The decomposition of [N₂B₁₀H₉]⁻ has not been studied in detail. It has been mentioned briefly that it decomposes from 120 °C accompanied by the release of nitrogen molecule. 13,14 The nature of the resulting products was not mentioned. In order to explain the formation of $[B_{20}H_{18}]^{2-}$ during the reaction of [N₂B₁₀H₉] with bulky amines or phosphines, we studied the thermal stability of pure $NMe_4[1-N_2B_{10}H_9]$ by thermogravimetric analysis (TGA) under two different atmospheres, i.e. argon and air.

The thermal stability was studied by TGA on 50 mg samples; the temperature was raised at a 2 K min⁻¹ heating rate. The decomposition reaction started at 150-160 °C under air atmosphere or argon atmosphere (Fig. 1). In order to obtain sufficient amounts of product for analysis, 0.2 g samples were also pyrolyzed under air or argon up to 200 °C at a 6 K min⁻¹ heating rate. The residual solid contained $\{N(CH_3)_4\}_2[B_{20}H_{18}]$ (90%), residual $NMe_4[N_2B_{10}H_9]$ (5%) and $[B_{12}H_{12}]^{2-}$ as characterized by electrospray mass spectrometry $(m/z = 216, \text{ calculated for } N(CH_3)_4[B_{12}H_{12}]^-: 215.6)$ and

²Laboratoire des Multimatériaux et Interfaces (UMR CNRS 5615), UCB Lyon 1, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France

^{*}Correspondence to: Daoud Naoufal, PO Box 25/323, Ghobeyri,


Figure 1. TGA of $NMe_4[N_2B_{10}H_9]$ under air and argon.

¹¹B NMR δ −14.83 (lit.¹⁴⁻¹⁶ −15.63). Pure $[B_{20}H_{18}]^{2-}$ was isolated by chromatography on a silica gel column using 30:70 CH₃CN:CH₂Cl₂ as eluent; the first fraction was NMe₄[N₂B₁₀H₉]; the second fraction was $[B_{20}H_{18}]^{2-}$; and the third fraction was a mixture of $[B_{20}H_{18}]^{2-}$ and $[B_{12}H_{12}]^{2-}$. Consistent with the literature data, $[B_{20}H_{18}]^{2-}$ proved to be a hydrophobic anion and was detected by thin-layer chromatography on DEAE cellulose at $R_f = 0$. ¹¹B NMR data (CH₃CN, J/H_3) were in agreement with Ref. 17: δ 30.55 (d, $J_{B-H} = 148$, 2B), 15.97 (s, 2B), −6.84 (d, $J_{B-H} = 142$, 2B), −12.35 (d, $J_{B-H} = 146$, 4B), −15.86 (d, $J_{B-H} = 140$, 4B), −19.29 (d, $J_{B-H} = 135$, 4B), −25.53 (d, $J_{B-H} = 148$, 2B). Electrospray mass spectrometry: m/z = 308.5 for the most intense peak, calculated 308 for N(CH₃)₄[B₂₀H₁₈]⁻.

 $NMe_4[1-N_2B_{10}H_9]$ decomposes to $\{N(CH_3)_4\}_2[B_{20}H_{18}]$ according to the oxidation reaction shown in Scheme 1.

The formation of $[B_{20}H_{18}]^{2-}$ was also accompanied by its slow degradation, giving the very stable $[B_{12}H_{12}]^{2-}$ and other unidentified products. The formation of $[B_{12}H_{12}]^{2-}$ can be attributed to polyhedral rearrangements, which have been observed at temperatures as low as $150-160\,^{\circ}\text{C}$.

The theoretical loss of mass for the previous reaction is equal to 12.78%, which corresponds to the dinitrogen formed.

Scheme 1.

Copyright © 2003 John Wiley & Sons, Ltd.

According to Fig. 1, the experimental loss of mass is 5% under air and 7.5% under argon. This difference between the theoretical and experimental losses can be explained by the following considerations. (1) The decomposition reaction is not straightforward. It produces not only $[B_{20}H_{18}]^{2-}$ but also $[B_{12}H_{12}]^{2-}$ and other products due to hydrolysis. (2) The starting product NMe₄[N₂B₁₀H₉] contains water chemically bound to the product. Drying this product under vacuum at ambient temperature could not remove the water. While drying the product under vacuum at 90 °C over 8 h, we observed a partial decomposition of NMe₄[N₂B₁₀H₉] to (NMe₄)₂[B₂₀H₁₈] and to boric acid. Under an argon atmosphere, $NMe_4[N_2B_{10}H_9]$ decomposes to $(NMe_4)_2[B_{20}H_{18}]$ at 150 °C. This latter is stable until 200 °C. Under air, the decomposition starts at 143 °C, then the (NMe₄)₂[B₂₀H₁₈] formed decomposes to boric acid and other unidentified products of hydrolysis.

The reaction of $NMe_4[N_2B_{10}H_9]$ with bulky amines or phosphines proceeded with difficulty because of steric hindrance and formed a complex mixture of products consisting mainly of $(NMe_4)_2[B_{20}H_{18}]$ when increasing the temperature to $150\,^{\circ}\text{C}$. This could be explained by the secondary reaction shown in Scheme 1.

EXPERIMENTAL

¹¹B NMR spectra were obtained at 96.29 MHz on a Brucker WF-300 spectrometer and were externally referenced to Et₂O·BF₃ (positive values downfield). IR spectra were recorded on a Nicolet Magna 550 FT spectrometer using KBr pressed discs. Electrospray mass spectrometry measurements were performed in the Mass Spectrometry Laboratory, Central Analytical Service of the CNRS, Solaize (France) on a VG-Platform Micromass spectrometer. The sample was introduced to the spectrometer as an acetonitrile solution. Decomposition products were separated by liquid–solid chromatography on silica gel using a 70:30 dichloromethane: acetonitrile mixture. TGA was performed on a B70 Setaram apparatus.

REFERENCES

- 1. Leyden RN, Hawthorne MF. Inorg. Chem. 1975; 14: 2444.
- 2. Komura M, Nakai H, Shiro M. J. Chem. Soc. Dalton Trans. 1987;
- 3. Hawthorne MF. Angew. Chem. Int. Ed. Engl. 1973; 32: 950.
- Naoufal D, Gruner B, Selucky P, Mongeot H. In Revue Internationale d'Héliotechnique. 2000 Mediterranean Conference for Environment and Solar, Beirut, Lebanon, 16–17 November 2000, Dujardin F., Charles J-P (eds). COMPLES 2000, IEEE, vol. EX493, 2001.
- 5. Naoufal D, Gruner B, Mongeot H. Polyhedron J. Inorg. Organomet. Chem. 1999; 18: 931.
- 6. Kaczmarczyk A, Dobrott RD, Lipscomb WN. *Proc. Natl. Acad. Sci. U. S. A.* 1962; **48**: 729.
- 7. Lewis JS, Kaczmarczyk A. J. Am. Chem. Soc. 1966; 88: 1068.

- 8. Schwalbe CH, Lipscomb WN. Inorg. Chem. 1971; 10: 160.
- 9. Curtis ZB, Young C, Kaczmarczyk A. Inorg. Chem. 1974; 13:
- 10. Kaczmarczyk A, Kolski GP. J. Am. Chem. Soc. 1965; 87: 1413.
- Kaczmarczyk A, Collins M. *Inorg. Chem.* 1975; 14: 207.
 Middaugh RL, Farha F. *J. Am. Chem. Soc.* 1966; 88: 4147.
- 13. Leyden RN, Hawthorne MF. J. Am. Chem. Soc. 1973; 95: 2032.
- 14. Leyden RN, Hawthorne MF. Inorg. Chem. 1975; 14: 2444.
- 15. Preetz W, Srebny HG, Marsmann HC. Z. Naturforsch. 1984; 39b:
- 16. Hermanek S. Chem. Rev. 1992; 92: 325.
- 17. Chamberland BL, Muetterties EL. Inorg. Chem. 1964; 3: 1451.