

Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.429

Carboranyl derivatives of amineboranes and boron analogs of esters: a synthetic investigation[†]

Geeta Rana¹, Kamesh Vyakaranam¹, Sarah C. Ledger¹, Shannon L. Delaney¹, John A. Maguire² and Narayan S. Hosmane¹*

Received 2 January 2003; Revised 9 January 2003; Accepted 13 January 2003

New functionalized carboranyl derivatives of amineboranes and boron analogs of esters are reported. The reaction of 1,12-(aminopropyl)-1,12-dicarbadodecaborane (2), 2-(aminopropyl)-1,2-dicarbadodecaborane (4), 1-methyl-2-(aminopropyl)-1,2-dicarbadodecaborane (6), 1-phenyl-2-(aminopropyl)-1,2-dicarbadodecaborane (8) with Me₃NBH₂X produced novel carboranylamineboranes of the general formula $1,12-[(CH_2)_3NH_2BH_2X]_2-1,12-C_2B_{10}H_{10}$ [X = CN (2a), COOCH₃ (2b), CONHEt (2c), CONHCH(CH₂C₆H₅)COOCH₃ (2d), CONHCH(CH₃)COOCH₃ (2e), CONHCH[CH(CH₃)₂]COOCH₃ (2f), CONHCH(CH₂C₆H₄OH)COOCH₃ (2g), 1-CH₂NH₂BH₂CN (2h)] or $1-R-2-[(CH_2)_3NH_2BH_2X]-1,2-C_2B_{10}H_{10}$ {R = H, X = CN (4a), COOCH₃ (4b), CON-HEt (4c), COOH (4d); $R = CH_3$, X = CN (6a), COOCH₃ (6b), CONHCH($CH_2C_6H_5$)COOCH₃ (6c), CONHCH(CH₃)COOCH₃ (6d), CONHCH[CH(CH₃)₂]COOCH₃ (6e), CONHCH(CH₂C₆H₄OH) $COOCH_3$ (6f); $R = C_6H_5$, X = CN (8a), $COOCH_3$ (8b), $CONHCH(CH_2C_6H_5)COOCH_3$ (8c), CONHCH(CH₃)COOCH₃ (8d), CONHCH[CH(CH₃)₂]COOCH₃ (8e), CONHCH(CH₂C₆H₄OH) COOCH₃ (8f)} by the amine exchange reaction. The reaction of 1-(aminomethyl)-1,2dicarbadodecaborane with Me_3NBH_2X (X = CN) produced 1-[CH₂NH₂BH₂CN]-1,2-C₂B₁₀H₁₀ (2h). Compounds 2a, 4a, 6a, and 8a were also synthesized by the reaction of 1,12-(aminopropyl)-1,12dicarbadodecaborane hydrochloride (1), 2-(aminopropyl)-1,2-dicarbadodecaborane hydrochloride (3), 1-methyl-2-(aminopropyl)-1,2-dicarbadodecaborane hydrochloride (5), 1-phenyl-2-(aminopropyl)-1,2dicarbadodecaborane hydrochloride (7) with sodium cyanoborohydride. The reaction of Li₂[1,2-CO₂- $1,2-C_2B_{10}H_{10}$] (9) or Li[1-R-2-CO₂-1,2-C₂B₁₀H₁₀], R = CH₃ (10), R = C₆H₅ (11), with Me₃NBH₂I gave $1,2-CO_2BH_2NMe_3-1,2-C_2B_{10}H_{10} \ \, (9a) \ \, or \ \, 1-R-2-CO_2BH_2NMe_3-1,2-C_2B_{10}H_{10}, \ \, R=CH_3 \ \, (10a), \ \, R=C_6H_5$ (11a), as new boron analogs of esters. All of these compounds were characterized by IR spectroscopy, 1 H, 13 C and 11 B NMR spectroscopy and chemical analyses. Copyright © 2003 John Wiley & Sons, Ltd.

KEYWORDS: synthesis; BNCT; amineboranes; carborane; substituted carboranes

E-mail: nhosmane@niu.edu

†Dedicated to Professor Thomas P. Fehlner on the occasion of his 65th birthday, in recognition of his outstanding contributions to organometallic and inorganic chemistry

Contract/grant sponsor: National Science Foundation; Contract/grant number: CHE-9988045.

Contract/grant sponsor: Robert A. Welch Foundation; Contract/grant number: N-1322.

Contract/grant sponsor: Petroleum Research Fund. Contract/grant sponsor: Northern Illinois University.

INTRODUCTION

Icosahedral carboranes (o-, m-, p-C₂B₁₀H₁₂) were first described in 1963,1,2 and thereafter have been the subject of many studies,³⁻⁵ more recently in the areas of materials chemistry⁶ and medicinal chemistry.⁷ Their thermal and chemical stabilities and high boron content have also made them attractive candidates for possible use in boron neutron capture therapy (BNCT).8,9 In this regard, one of the major disadvantages of the icosahedral carboranes is their hydrophobicity and consequent low water solubility. Studies have shown that p-carborane isomers, the least

¹Department of Chemistry and Biochemistry, Michael Faraday Laboratories, Northern Illinois University, DeKalb, IL 60115-2862, USA ²Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA

^{*}Correspondence to: Narayan S. Hosmane, Department of Chemistry and Biochemistry, Michael Faraday Laboratories, Northern Illinois University, DeKalb, IL 60115-2862, USA.

Main Group Metal Compounds AOC

toxic of the compounds, are also the least water soluble. From such solubility considerations, much of the research in this area has concentrated on the syntheses of derivatives of the o-carboranes. Our interest in these compounds, particularly amidecarboranylboranes, originates from our recent observation that, in a C6 gliosarcoma tumor implanted in a rat brain model, Me₃NBH₂CONHCH(4- $CH_2C_6H_5$)COOMe showed $ca\ 9:1$ tumor: normal brain (T/N)ratios, compared with 3:1 for p-boronophenylalanine (BPA), whose B-10 enriched isomer is currently undergoing clinical trails as a BNCT agent. 10 Moreover, α -autoradiography showed that Me₃NBH₂CONHCH(4-CH₂C₆H₅)COOMe was also found to incorporate into tumor cells that were infiltrating into normal brain tissue. This is important since such cells are thought to be a leading cause of tumor recurrence after radiation.¹¹ These results indicate that the amidecarboranylboranes might have potential therapeutic value and their syntheses and characterizations are well worth investigating. This is such a report on a series of neutral icosahedral carboranyl compounds produced from the reactions of carboranylamine hydrochlorides with a series of amineboranes, as outlined in Scheme 1.

EXPERIMENTAL

Materials and methods

All solvents, chemicals and reagents were of analytical grade and used without further purification unless otherwise noted. Baker analyzed silica gel (60-200 mesh) was used for flash column chromatography. 1,12-(Aminopropyl)-1,12dicarbadodecaborane hydrochloride (1), 2-(aminopropyl)-1,2-dicarbadodecaborane hydrochloride (3), 1-methyl-2-(aminopropyl)-1,2-dicarbadodecaborane hydrochloride (5), and 1-phenyl-2-(aminopropyl)-1,2-dicarbadodecaborane hydrochloride (7) were synthesized by methods described by Soloway and coworkers.¹² The carboranylamines, 1,12-bis-(propylamine)-1,12-dicarbadodecaborane (2), 1-(propylamine)-1,2-dicarbadodecaborane (4), 1-methyl-2-(propylamine)-1,2-dicarbadodecaborane (6), and 1-phenyl-2-(propylamine)-1,2-dicarbadodecaborane (8) were synthesized by reacting the corresponding amine hydrochlorides with Et₃N followed by the removal of Et₃N⁺HCl⁻. The amineboranes of the formula Me_3NBH_2X [X = CN, COOCH₃, CONHEt, COOH, CONHCH(CH₂C₆H₅)COOMe, CONHCH(4-CH₂C₆H₄OH)COOMe, CONHCH(CHMe₂) COOMe, CONHCH(CH₃)COOMe, CONHCH₂CH₃] were made using the methods described by Spielvogel and coworkers. 13,14 1,2-Bis-(carboxy)-1,2-dicarbadodecaborane (9), 1-methyl-2-(carboxy)-1,2-dicarbadodecaborane (10), and 1-phenyl-2-(carboxy)-1,2-dicarbadodecaborane (11) were synthesized by a procedure identical to the one described by Kahl and Kasar. 15 closo-1,2-C₂B₁₀H₁₂ (o-carborane), closo-1,12- $C_2B_{10}H_{12}$ (p-carborane), closo-1-Ph-1,2- $C_2B_{10}H_{11}$ (phenyl-ocarborane), and *closo-*1-Me-1,2-C₂B₁₀H₁₁ (methyl-*o*-carborane)

were obtained from KATCHEM and used as received. Cyclohexane, 1,2-dimethoxyethane (DME) and benzene were dried over sodium metal and benzophenone and doubly distilled before use. n-BuLi (2.0 M in cyclohexane) was used as received.

Spectroscopic and analytical procedures

¹H, ¹¹B and ¹³C NMR spectra were recorded on a Bruker Fourier-transform multinuclear magnetic resonance spectrometer at 200 MHz, 64.2 MHz and 50.3 MHz respectively. IR spectra were recorded using a Nicolet Magna 550 FT-IR spectrophotometer. Elemental analyses were obtained in house using a Perkin Elmer 2400 CHN elemental analyzer.

Syntheses

All experiments were carried out in 250 ml Pyrex glass roundbottom flasks, each one fitted with a nitrogen inlet and containing a magnetic stirring bar. The purities of all the known compounds were checked by comparing their IR and NMR spectra and melting points with authentic samples.

1,12-[Propyl-N-(cyanoborane)amine]-1,12dicarbadodecaborane (2a)

A 3.85 mmol (1.00 g) sample of 1,12-(aminopropyl)-1,12dicarbadodecaborane (2) and 7.71 mmol (0.76 g) of trimethylaminecyanoborane were dissolved in anhydrous tetrahydrofuran (THF) (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by ¹¹B NMR spectroscopy. After 12 h, the solvent was removed under reduced pressure, leaving a crude white solid product that was then recrystallized from dichloromethane: pentane (7:2) to produce off-white needles of 1,12-[propyl-N-(cyanoborane)amine]-1,12-dicarbadodecaborane (2a) (0.79 g, 78% yield, soluble in polar and slightly soluble in nonpolar organic solvents; m.p. 111-112 °C). Spectroscopic and analytical data for 2a: 1 H NMR [dimethylsulfoxide (DMSO), relative to Me₄Si] δ 2.12 (4H, t, CH₂), 1.40 (4H, m, CH₂), 3.10 (4H, m, CH₂), 2.01 (10H, br, BH), 0.50-1.20 (4H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ –12.40 (10B, $J_{(BH)} = 143$ Hz), –14.82 (2B, exopolyhedral $J_{(BH)} = 143 \text{ Hz}$); ¹³C NMR (DMSO, relative to Me₄Si) δ 77.20 (C_{cage}), 114.00 (CN), 54.80 (CH₂); IR (KBr pellet, cm⁻¹) 2350, 2575 [ν (B–H)]. Elemental anal. Found: C, 35.84; H, 9.10; N, 16.75. Calc. for C₁₀H₃₀B₁₂N₄: C, 35.73; H, 8.99; N, 16.67%.

Alternate method for (2a)

A 3.01 mmol (1.00 g) sample 1,12-(aminopropyl)-1,12dicarbadodecaborane hydrochloride (1) and sodium cyanoborohydride (0.38 g, 6.02 mmol) were dissolved in anhydrous DME (25 ml) under nitrogen atmosphere. The resulting solution was refluxed and monitored by its ¹¹B NMR spectra. After 12 h of refluxing, the reaction flask was cooled to room temperature and then filtered through a glass frit to collect a clear filtrate. The white solid, collected on the frit (identified as NaCl) was discarded. The solvent, DME, was then removed

Scheme 1. Synthetic scheme for the preparation of carboranyl amineboranes.

from the filtrate under reduced pressure. The resulting crude white residue was purified by column chromatography (8:2 CHCl₃: hexane) to isolate a white crystalline solid, identified as 2a, in 86% yield (0.87 g, 2.58 mmol). Spectroscopic and analytical data were the same as above.

1,12-[Propyl-N-(methoxycarbonylborane)amine]-1,12-dicarbadodecaborane (2b)

A 3.85 mmol (1.00 g) sample of 1,12-(aminopropyl)-1,12dicarbadodecaborane (2) and 7.71 mmol (0.87 g) of trimethylaminecarbomethoxyborane were dissolved in anhydrous THF (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by ¹¹B NMR spectroscopy. After 9 h, the solvent was removed under reduced pressure and the resulting crude white solid product was then recrystallized from ethylacetate: pentane (9:1) to produce off-white needles of 1,12-[propyl-N-(methoxycarbonylborane)amine]-1,12dicarbadodecaborane (2b) (0.86 g, 72% yield, soluble in polar organic solvents; m.p. 126-129 °C). Spectroscopic and analytical data for 2b: ¹H NMR (DMSO, relative to Me₄Si) δ 2.10 (4H, t, CH₂), 1.32 (4H, m, CH₂), 2.93 (4H, m, CH₂), 2.00 (10H, br, BH), 0.60–1.30 (4H, br, BH), 3.82 (6H, s, CH₃), 5.09 (4H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ –12.60 (10B, $J_{(BH)} = 144.2 \text{ Hz}$), –11.37 (2B, exopolyhedral $J_{\rm (BH)}=100~{\rm Hz}$); ¹³C NMR (DMSO, relative to Me₄Si) δ 75.80 (C_{cage}) , 179.20 (C=O), 54.00 (OCH₃); IR (KBr pellet, cm⁻¹) 2371, 2560 [ν (B–H)]. Elemental anal. Found: C, 35.96; H, 9.17; N, 7.02. Calc. for $C_{12}H_{36}B_{12}N_2O_4$: C, 35.84; H, 9.02; N, 6.97%.

1,12-[Propyl-N-(carbamoylborane)amine]-1,12dicarbadodecaborane (2c)

A 3.92 mmol (1.02 g) sample of 1,12-(aminopropyl)-1,12-dicarbadodecaborane (2) and 7.72 mmol (1.11 g) of trimethylaminecarbamoylborane were dissolved in anhydrous THF (15 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 17 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from ethylacetate: pentane: hexane (9:1:1) to produce white crystals of 1,12-[propyl-*N*-(carbamoylborane)amine]-1,12-dicarbadodecaborane (2c) (0.91 g, 70% yield, m.p. 136-137°C). Spectroscopic and analytical data for 2c: ¹H NMR (DMSO, relative to Me₄Si) δ 2.13 (4H, t, CH₂), 1.41 (4H, m, CH₂), 3.11 (4H, m, CH₂), 2.02 (10H, br, BH), 0.50-1.10 (4H, br, BH), 2.76 (4H, q, CH₂), 1.02 (6H, t, CH₃), 5.11 (4H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ –11.90 (10B, $J_{(BH)} = 142.8 \text{ Hz}$), -9.86 (2B, exopolyhedral $J_{(BH)} = 91.0$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 76.20 (C_{cage}), 162.00 (C=O), 47.00 (NCH₂), 20.00 (CH₃); IR (KBr pellet, cm⁻¹) 2433, 2520 [ν (B-H)]. Elemental anal. Found: C, 39.30; H, 9.99; N, 13.15. Calc. for C₁₄H₄₂B₁₂N₄O₂: C, 39.26; H, 9.89; N, 13.09%.

1,12-[Propyl-N-(methylcarbonyl-L-

phenylalanine)amine]-1,12-dicarbadodecaborane (2d) A 3.88 mmol (1.01 g) sample of 1,12-(aminopropyl)-1,12dicarbadodecaborane (2) and 7.72 mmol (2.15 g) of trimethylamineborylcarbonylphenylalanine methylester were dissolved in anhydrous THF (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by ¹¹B NMR spectroscopy. After 23 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from acetone:chloroform:pentane (7:2:1) to produce white crystals of 1,12-[propyl-N-(methylcarbonyl-Lphenylalanine)amine]-1,12-dicarbadodecaborane (2d) (1.21 g, 58% yield, soluble in polar organic solvents; m.p. >250 °C, decomposed). Spectroscopic and analytical data for 2d: ${}^{1}H$ NMR (DMSO, relative to Me₄Si) δ 2.15 (4H, t, CH₂), 1.72 (4H, m, CH₂), 2.91 (4H, m, CH₂), 0.50-1.20 (4H, br, BH), 2.01 (10H, br, BH), 3.86 (6H, s, CH₃), 7.16-7.41 (10H, m, aromatic), 3.12 (4H, d, CH₂), 3.51 (2H, m, CH), 5.25 (4H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ -13.13 (10B, $I_{\text{(BH)}} = 136.0 \text{ Hz}$), -7.76 (2B, exopolyhedral $J_{(BH)} = 126.4 \text{ Hz}$); ¹³C NMR (DMSO, relative to Me₄Si) δ 74.20 (C_{cage}), 164.00 (C=O), 129.5 (aromatic), 56.00 (OCH₃), 22.00 (CH₂), 42.60 (CH); IR (KBr pellet, cm⁻¹) 2268, 2570 [ν(B-H)]. Elemental anal. Found: C, 51.77; H, 7.88; N, 8.09. Calc. for C₃₀H₅₂B₁₂N₄O₆: C, 51.73; H, 7.81; N, 8.05%.

1,12-[Propyl-N-(methylcarbonyl-L-alanine)amine]-1,12-dicarbadodecaborane (**2e**)

A 3.96 mmol (1.03 g) sample of 1,12-(aminopropyl)-1,12dicarbadodecaborane (2) and 7.70 mmol (2.15 g) of trimethylamineborylcarbonylalanine methylester were dissolved in anhydrous THF (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 23 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from acetone: chloroform: pentane (7:2:1) to produce white crystals of 1,12-[propyl-N-(methylcarbonyl-L-alanine)amine]-1,12-dicarbadodecaborane (2e) (1.21 g, 58% yield, soluble in polar organic solvents; m.p. >270 °C, decomposed). Spectroscopic and analytical data for 2e: ¹H NMR (DMSO, relative to Me₄Si) δ 2.12 (4H, t, CH₂), 1.58 (4H, m, CH₂), 2.86 (4H, m, CH₂), 0.50-1.30 (4H, br, BH), 2.08 (10H, br, BH), 3.48 (2H, m, CH), 3.82 (6H, s, CH₃), 1.30 (6H, d, CH₃), 5.35 (4H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ –12.82 (10B, $J_{\text{(BH)}} = 141.0 \text{ Hz}$), $-7.84 \text{ (2B, exopolyhedral } J_{\text{(BH)}} = 130.6 \text{ Hz}$); 13 C NMR (DMSO, relative to Me₄Si) δ 72.60 (C_{cage}), 165.60 (C=O), 54.50 (OCH₃), 38.00 (CH₃), 43.00 (CH); IR (KBr pellet, cm⁻¹) 2257, 2485 [ν (B–H)]. Elemental anal. Found: C, 39.75; H, 8.50; N, 10.33. Calc. for C₁₈H₄₆B₁₂N₄O₆: C, 39.72; H, 8.52; N, 10.30%.

1,12-[Propyl-N-(methylcarbonyl-L-valine)amine]-1,12-dicarbadodecaborane (**2f**)

A 3.88 mmol (1.01 g) sample of 1,12-(aminopropyl)-1,12dicarbadodecaborane (2) and 7.71 mmol (1.77 g) of trimethylamineborylcarbonylvaline methylester were dissolved in anhydrous THF (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 20 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from acetone: pentane (7:1) to produce white crystals of 1,12-[propyl-N-(methylcarbonyl-L-valine)amine]-1,12dicarbadodecaborane (2f) (1.07 g, 57 % yield, m.p. >250 °C, decomposed). Spectroscopic and analytical data for 2f: ¹H NMR (DMSO, relative to Me₄Si) δ 2.20 (4H, t, CH₂), 1.46 (4H, m, CH₂), 2.97 (4H, m, CH₂), 0.46–1.46 (4H, br, BH), 2.12 (10H, br, BH), 3.79 (6H, s, CH₃), 1.12 (12H, d, CH₃), 3.25 (2H, d, CH), 1.72 (2H, m, CH), 5.41 (4H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ -12.96 (10B, $J_{(BH)} = 143.0$ Hz), -7.92 (2B, exopolyhedral $J_{\rm (BH)}=128.7~{\rm Hz}$); $^{13}{\rm C}$ NMR (DMSO, relative to Me₄Si) δ 73.80 (C_{cage}), 166.30 (C=O), 52.00 (OCH₃), 21.00 (CH₃), 25.00, 43.90 (CH); IR (KBr pellet, cm⁻¹) 2281, 2513 [ν(B–H)]. Elemental anal. Found: C, 44.20; H, 9.15; N, 9.25. Calc. for C₂₂H₅₈B₁₂N₄O₆: C, 44.01; H, 9.07; N, 9.33%.

1,12-[Propyl-N-(methylcarbonyl-L-tyrosine)amine]-1,12-dicarbadodecaborane (2g)

A 4.01 mmol (1.04 g) sample of 1,12-(aminopropyl)-1,12dicarbadodecaborane (2) and 7.75 mmol (2.27 g) of trimethylamineborylcarbonyltyrosine methylester were dissolved in anhydrous THF (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 15 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from acetone:chloroform:pentane (5:4:1) to produce white crystals of 1,12-[propyl-N-(methylcarbonyl-Ltyrosine)amine]-1,12-dicarbadodecaborane (2g) (1.20 g, 50% yield, m.p. >250 °C, decomposed). Spectroscopic and analytical data for **2g**: 1 H NMR (DMSO, relative to Me₄Si) δ 2.22 (4H, $t,\,CH_2),\,1.41\;(4H,\,m,\,CH_2),\,3.02\;(4H,\,m,\,CH_2),\,0.42-1.52\;(4H,\,m,\,C$ br, BH), 2.15 (10H, br, BH), 3.79 (6H, s, CH₃), 7.30–7.80 (10H, m, aromatic), 3.19 (2H, t, CH), 3.08 (4H, d, CH₂), 5.38 (4H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ –13.41 (10B, $J_{\text{(BH)}} = 134.0 \text{ Hz}$), -7.62 (2B, exopolyhedral $J_{\text{(BH)}} = 126.4 \text{ Hz}$); ^{13}C NMR (DMSO, relative to Me₄Si) δ 72.8 (C_{cage}), 164.30 (C=O), 128.00-131.00 (aromatic), 23.90 (CH₂), 44.00 (CH); IR (KBr pellet, cm⁻¹) 2399, 2538 [ν (B–H)]. Elemental anal. Found: C, 49.55; H, 7.53; N, 7.72. Calc. for $C_{30}H_{54}B_{12}N_4O_8$: C, 49.45; H, 7.47; N, 7.69%.

1-[Methyl-N-(cyanoborane)amine]-1,2-dicarbadodecaborane (2h)

A 4.70 mmol (0.82 g) sample of 1-(aminomethyl)-1,2-dicarbadodecaborane and 4.71 mmol (0.46 g) of trimethylaminecyanoborane were dissolved in anhydrous THF (20 ml)

under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 8 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from acetone: chloroform: pentane (5:4:1) to produce white crystals of 2h (0.62 g, 63% yield, m.p. >240 °C, decomposed). Spectroscopic and analytical data for 2h: ¹H NMR (DMSO, relative to Me₄Si) δ 2.22 (2H, t, CH₂), 0.42–1.52 (12H, br, BH), 4.56 (1H, s, CH); 11B NMR (DMSO, relative to BF₃·OEt₂) δ -5.21 (1B, $J_{(BH)} = 129.6 \text{ Hz}$), -8.18 (1B, $J_{\text{(BH)}} = 133.7 \text{ Hz}$), $-10.23 \text{ (2B, } J_{\text{(BH)}} = 140.3 \text{ Hz}$), -12.18 (2B, $J_{(BH)}$ unresolved), -14.54 (4B, $J_{(BH)}$ unresolved), -13.88 (1B, $J_{\rm (BH)} = 102.0 \, \rm Hz); ^{13} \rm C \, NMR \, (DMSO, \, relative \, to \, Me_4Si) \, \delta \, 73.8,$ 78.3 (C_{cage}), 23.90 (CH₂); IR (KBr pellet, cm⁻¹) 2400, 2269, 2389 [v(B–H)]. Elemental anal. Found: C, 22.43; H, 7.98; N, 13.11. Calc. for C₄H₁₇B₁₁N₂: C, 22.65; H, 8.02; N, 13.21%.

2-[Propyl-N-(cyanoborane)amine]-1,2-dicarbadodecaborane (4a)

A 4.16 mmol (1.00 g) sample of 2-(aminopropyl)-1,2dicarbadodecaborane (4) and 4.15 mmol (0.41 g) of trimethylaminecyanoborane were placed in a 100 ml roundbottom flask. Anhydrous THF was added to the reaction vessel and the contents were refluxed at 65°C and monitored via 11B NMR. After complete conversion (9.5 h), the solvent was removed and the solid obtained was recrystallized from methylene chloride to isolate a white crystalline solid, 2-[propyl-N-(cyanoborane)amine]-1,2-dicarbadodecaborane (4a) in 63% yield (0.61 g, m.p. 91–93 °C). Spectroscopic and analytical data for 4a: ¹H NMR (DMSO, relative to Me₄Si) δ 2.21 (2H, t, CH₂), 1.60 (2H, m, CH₂), 3.21 (2H, m, CH₂), 5.19 (1H, s, CH), 0.60-1.48 (12H, br, BH), 4.98 (2H, m, NH₂), 5.25 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) $\delta - 7.21$ (1B, $J_{(BH)} = 129.6$ Hz), -9.38 $(1B, J_{(BH)} = 133.7 \text{ Hz}), -11.53 (2B, J_{(BH)} = 140.3 \text{ Hz}), -13.68$ (2B, $J_{(BH)}$ unresolved), -15.84 (4B, $J_{(BH)}$ unresolved), -14.68(1B, $J_{\rm (BH)} = 102.0$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 72.80 (C_{cage}, CH not observed), 110.20 (CN); IR (KBr pellet, cm⁻¹) 2384, 2601 [ν (B–H)]. Elemental anal. Found: C, 30.21; H, 8.90; N, 11.77. Calc. for $C_6H_{21}B_{11}N_2$: C, 30.00; H, 8.81; N, 11.67%.

Alternative method for **4a**

A 3.62 mmol (1.00 g) sample of 2-(aminopropyl)-1,2-dicarbadodecaborane hydrochloride (3) and sodium cyanoborohydride (0.45 g, 7.24 mmol) were dissolved in anhydrous DME (35 ml) under nitrogen atmosphere. The resulting solution was refluxed and monitored by ¹¹B NMR spectra. After 22 h of refluxing, the reaction flask was cooled to room temperature and then filtered through a glass frit to collect a clear filtrate. The white solid, collected on the frit (identified as NaCl) was discarded. The solvent, DME, was then removed from the filtrate under reduced pressure. The resulting crude white residue was purified by column chromatography (9:CHCl₃: hexane) to isolate a white crystalline

solid, identified as 4a, in 76% yield (0.66 g, 2.75 mmol). Spectroscopic and analytical data were the same as above.

2-[Propyl-N-(carbomethoxyborane)amine]-1,2dicarbadodecaborane (**4b**)

A 4.24 mmol (1.02 g) sample of 2-(aminopropyl)-1,2dicarbadodecaborane (4) and 4.16 mmol (0.55 g) of trimethylaminecarbomethoxyborane were placed in a 100 ml roundbottom flask. Anhydrous THF was added to the reaction vessel and the contents were refluxed at 65 °C and monitored via ¹¹B NMR. After complete conversion (9.5 h), the solvent was removed and the solid obtained was recrystallized from chloroform to isolate a white crystalline solid, 2-[propyl-N-(carbomethoxyborane)amine]-1,2-dicarbadodecaborane (4b) in 66% yield (0.72 g, m.p. 105-106 °C). Spectroscopic and analytical data for **4b**: 1 H NMR (DMSO, relative to Me₄Si) δ 1.98 (2H, t, CH₂), 1.56 (2H, m, CH₂), 3.16 (2H, m, CH₂), 5.08 (1H, s, CH), 0.50-1.37 (12H, br, BH), 3.78 (3H, s, CH₃), 5.26 (2H, br, NH₂); ^{11}B NMR (DMSO, relative to $BF_3 \cdot OEt_2)$ $\delta - 7.42$ $(1B, J_{(BH)} = 126.4 \text{ Hz}), -8.92 (1B, J_{(BH)} = 130.82 \text{ Hz}), -10.68$ $(2B, J_{(BH)} = 139.7 \text{ Hz}), -13.94 (2B, J_{(BH)} \text{ unresolved}), -15.82$ (4B, $J_{(BH)}$ unresolved), -10.23 (1B, $J_{(BH)} = 96.0$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 71.10 (C_{cage}, CH not observed), 176.40 (C=O), 55.00 (OCH₃); IR (KBr pellet, cm⁻¹) 2246, 2574 $[\nu(B-H)]$. Elemental anal. Found: C, 30.55; H, 8.95; N, 5.15. Calc. for C₇H₂₄B₁₁NO₂: C, 30.77; H, 8.86; N, 5.13%.

2-[Propyl-N-(carbamoylborane)amine]-1,2dicarbadodecaborane (4c)

A 4.28 mmol (1.03 g) sample of 2-(aminopropyl)-1,2dicarbadodecaborane (4) and 4.16 mmol (0.60 g) of trimethylaminecyanoborane were placed in a 100 ml round-bottom flask. Anhydrous THF was added to the reaction vessel and the contents were refluxed at 65 °C and monitored via ¹¹B NMR. After complete conversion (17 h), the solvent was removed and the solid obtained was recrystallized from methylene chloride: pentane to isolate a off-white crystalline solid, 2-[propyl-N-(carbamoylborane)amine]-1,2dicarbadodecaborane (4c) in 65% yield (0.74 g, m.p. 100 °C). Spectroscopic and analytical data for 4c: ¹H NMR (DMSO, relative to Me₄Si) δ 1.96 (2H, t, CH₂), 1.42 (2H, m, CH₂), 3.12 (2H, m, CH₂), 5.12 (1H, s, CH), 0.52–1.20 (12H, br, BH), 2.76 (2H, q, CH₂), 1.22 (3H, t, CH₃), 5.30 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) $\delta - 7.38$ (1B, $J_{(BH)} = 123.6$ Hz), -9.42(1B, $J_{(BH)} = 128.6 \text{ Hz}$), -11.22 (2B, $J_{(BH)} = 142.3 \text{ Hz}$), -14.01 $(2B, J_{(BH)} \text{ unresolved}), -16.01 (4B, J_{(BH)} \text{ unresolved}), -8.2 (1B, J_{(BH)})$ $J_{\rm (BH)} = 89.0$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 69.20 (C_{cage}, CH not observed), 164.00 (C=O), 44.00 (NCH₂), 21.00 (CH₃); IR (KBr pellet, cm⁻¹) 2393, 2591 [ν (B–H)]. Elemental anal. Found: C, 33.63; H, 9.53; N, 9.86. Calc. for C₈H₂₇B₁₁N₂O: C, 33.57; H, 9.51; N, 9.79%.

2-[Propyl-N-(carboxyborane)amine]-1,2dicarbadodecaborane (4d)

A 4.20 mmol (1.01 g) sample of 2-(aminopropyl)-1,2dicarbadodecaborane (4) and 4.16 mmol (0.49 g) of trimethylaminecarboxyborane were placed in a 100 ml round-bottom

flask. Anhydrous THF was added to the reaction vessel and the contents were refluxed at 65°C and monitored via 11B NMR. After complete conversion (22 h), the solvent was removed and the solid obtained was recrystallized from THF to isolate a white crystalline solid, 2-[propyl-N-(carboxyborane)amine]-1,2-dicarbadodecaborane (4d) in 55% yield (0.57 g, m.p. 131–133 °C). Spectroscopic and analytical data for 4d: ¹H NMR (DMSO, relative to Me₄Si) δ 1.99 (2H, t, CH₂), 1.39 (2H, m, CH₂), 3.18 (2H, m, CH₂), 5.14 (1H, s, CH), 0.61–1.39 (12H, br, BH), 5.29 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) $\delta - 7.62$ (1B, $J_{(BH)} = 125.8$ Hz), -10.21(1B, $J_{(BH)} = 126.2 \text{ Hz}$), -10.98 (2B, $J_{(BH)} = 137.9 \text{ Hz}$), -13.88(2B, $J_{\text{(BH)}}$ unresolved), -16.10 (4B, $J_{\text{(BH)}}$ unresolved), -9.40(1B, $J_{\rm (BH)} = 98.0$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 71.6 (C_{cage}, CH not observed), 182.00 (C=O); IR (KBr pellet, cm⁻¹) 2399, 2590 [ν (B–H)]. Elemental anal. Found: C, 27.69; H, 8.65; N, 5.40. Calc. for C₆H₂₂B₁₁NO₂: C, 27.81; H, 8.56; N, 5.41%.

1-Methyl-2-[propyl-N-(cyanoborane)amine]-1,2dicarbadodecaborane (6a)

A 3.93 mmol (1.03 g) sample of 1-methyl-2-(aminopropyl)-1,2-dicarbadodecaborane (6) and 3.95 mmol (0.39 g) of trimethylaminecyanoborane were dissolved in anhydrous THF (15 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by ¹¹B NMR spectroscopy. After 5 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from methylene chloride: pentane (5:1) to produce white crystals of 1-methyl-2-[propyl-N-(cyanoborane)amine]-1,2-dicarbadodecaborane (6a) (0.76 g, 77% yield, soluble in polar organic solvents; m.p. 95–97 °C). Spectroscopic and analytical data for 6a: ¹H NMR (DMSO, relative to Me₄Si) δ 2.11 (2H, t, CH₂), 1.42 (2H, m, CH₂), 2.91 (2H, m, CH₂), 0.58–1.42 (12H, br, BH), 2.24 (3H, s, CH₃), 5.21 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ –7.82 (1B, $J_{(BH)} = 132.4 \text{ Hz}$), -9.91 (1B, $J_{(BH)} = 141.2 \text{ Hz}$), -12.01 $(2B, J_{(BH)} = 146.8 \text{ Hz}), -14.41 (2B, J_{(BH)} \text{ unresolved}), -16.28$ $(4B, J_{(BH)} \text{ unresolved}), -12.82 (1B, J_{(BH)} = 108.0 \text{ Hz}); {}^{13}\text{C NMR}$ (DMSO, relative to Me₄Si) δ 73.20, 65.40 (C_{cage}), 113.00 (CN); IR (KBr pellet, cm⁻¹) 2395, 2566 [ν (B–H)]. Elemental anal. Found: C, 33.14; H, 8.99; N, 11.32. Calc. for C₇H₂₃B₁₁N₂: C, 33.07; H, 9.12; N, 11.02.

Alternative method for **6a**

A 3.44 mmol (1.00 g) sample of 1-methyl-2-(aminopropyl)-1,2-dicarbadodecaborane hydrochloride (5) and sodium cyanoborohydride (0.43 g, 6.88 mmol) were dissolved in anhydrous DME (30 ml) under nitrogen atmosphere. The resulting solution was refluxed and monitored by 11 B NMR spectra. After 20 h of refluxing, the reaction flask was cooled to room temperature and then filtered through a glass frit to collect a clear filtrate. The white solid, collected on the frit (identified as NaCl) was discarded. The solvent, DME, was then removed from the filtrate under reduced pressure. The resulting crude white residue was purified

by column chromatography $(9: CHCl_3: hexane)$ to isolate a white crystalline solid, identified as 6a, in 86% yield (0.75 g, 2.95 mmol). Spectroscopic and analytical data were the same as above.

1-Methyl-2-[propyl-N-(carbomethoxyborane)amine]-1,2-dicarbadodecaborane (**6b**)

A 4.05 mmol (1.02 g) sample of 1-methyl-2-(aminopropyl)-1,2-dicarbadodecaborane (6) and 3.93 mmol (0.52 g) of trimethylaminecarbomethoxyborane were dissolved in anhydrous THF (25 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 15 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from methylene chloride: pentane: toluene (5:1:3) to produce cream crystals of 1-methyl-2-[propyl-N-(carbomethoxyborane)amine]-1,2-dicarbadodecaborane (6b) (0.84 g, 75% yield, soluble in organic solvents; m.p. 125°C). Spectroscopic and analytical data for **6b**: ¹H NMR (DMSO, relative to Me₄Si) δ 2.06 (2H, t, CH₂), 1.41 (2H, m, CH₂), 3.02 (2H, m, CH₂), 3.86 (3H, s, CH₃), 0.50-1.48 (12H, br, BH), 2.21 (3H, s, CH₃), 5.31 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) $\delta - 7.78$ (1B, $J_{(BH)} = 133.6 \text{ Hz}$), -10.12 (1B, $J_{(BH)} = 140.8 \text{ Hz}$), -12.24(2B, $J_{(BH)} = 144.6 \text{ Hz}$), -14.38 (2B, $J_{(BH)}$ unresolved), -16.31(4B, $J_{(BH)}$ unresolved), -8.27 (1B, $J_{(BH)} = 100.0$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 72.91, 64.80 (C_{cage}), 175.60 (C=O), 52.90 (OCH₃); IR (KBr pellet, cm⁻¹) 2421, 2581 [ν (B–H)]; Elemental anal. Found: C, 33.20; H, 8.91; N, 4.90. Calc. for C₈H₂₆B₁₁NO₂: C, 33.45; H, 9.13; N, 4.88%.

1-Methyl-2-[propyl-N-(methylcarbonyl-L-phenylalanine)amine]-1,2-dicarbadodecaborane (6c)

A 3.96 mmol (1.01 g) sample of 1-methyl-2-(propylamine)-1,2dicarbadodecaborane (6) and 3.93 mmol (1.09 g) of trimethylamineborylcarbonylphenylalanine methylester were dissolved in anhydrous THF (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by ¹¹B NMR spectroscopy. After 9 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from acetone: chloroform: pentane (5:4:1) to produce white crystals of 1-methyl-2-[propyl-N-(methylcarbonyl-Lphenylalanine)amine]-1,2-dicarbadodecaborane (6c) (1.01 g, 59% yield, m.p. >200°C, decomposed). Spectroscopic and analytical data for 6c: ${}^{1}H$ NMR (DMSO, relative to Me₄Si) δ 2.02 (2H, t, CH₂), 1.43 (2H, m, CH₂), 3.11 (2H, m, CH₂), 2.11 (3H, s, CH₃), 0.52-1.42 (12H, br, BH), 3.28 (1H, t, CH), 3.83 (3H, s, CH₃), 3.10 (2H, d, CH₂), 7.78 (5H, m, aromatic), 5.21 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ –7.46 $(1B, J_{(BH)} = 128.4 \text{ Hz}), -9.02 (1B, J_{(BH)} = 131.6 \text{ Hz}), -10.91$ $(2B, J_{(BH)} = 143.1 \text{ Hz}), -14.21 (2B, J_{(BH)} \text{ unresolved}), -16.11$ (4B, $J_{(BH)}$ unresolved), -9.90 (1B, $J_{(BH)} = 101.0$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 76.40, 72.50 (C_{cage}), 55.10 (OCH₃), 129.60 (aromatic), 26.40 (CH₂), 41.30 (CH), 169.80 (C=O); IR (KBr pellet, cm⁻¹) 2379, 2612 [ν (B–H)]. Elemental anal.

Found: C, 47.15; H, 7.90; N, 6.66. Calc. for $C_{17}H_{35}B_{11}N_2O_3$: C, 47.11; H, 7.91; N, 6.47%.

1-Methyl-2-[propyl-N-(methylcarbonyl-L-alanine)amine]-1,2-dicarbadodecaborane (6d)

A 4.04 mmol (1.03 g) sample of 1-methyl-2-(propylamine)-1,2-dicarbadodecaborane (6) and 3.93 mmol (0.80 g) of trimethylamineborylcarbonylalanine methylester were dissolved in anhydrous THF (25 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by ¹¹B NMR spectroscopy. After 21 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from chloroform: pentane (9:1) to produce white crystals of 1-methyl-2-[propyl-N-(methylcarbonyl-Lalanine)amine]-1,2-dicarbadodecaborane (6d) (0.80 g, 57% yield, m.p. >200 °C, decomposed). Spectroscopic and analytical data for 6d: ¹H NMR (DMSO, relative to Me₄Si) δ 2.19 (2H, t, CH₂), 1.52 (2H, m, CH₂), 3.10 (2H, m, CH₂), 2.12 (3H, s, CH₃), 0.46-1.15 (12H, br, BH), 3.82 (3H, s, CH₃), 3.08 (1H, q, CH), 1.12 (3H, d, CH₃), 5.25 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ -7.58 (1B, $J_{(BH)} = 133.7 \text{ Hz}$), -10.22 $(1B, J_{(BH)} = 134.1 \text{ Hz}), -11.02 (2B, J_{(BH)} = 142.9 \text{ Hz}), -14.40$ (2B, $J_{(BH)}$ unresolved), -16.41 (4B, $J_{(BH)}$ unresolved), -10.02(1B, $J_{(BH)} = 104.0 \text{ Hz}$); ¹³C NMR (DMSO, relative to Me₄Si) δ 76.00, 74.30 (C_{cage}), 54.30 (OCH_3), 22.00 (CH_3), 42.40 (CH), 166.80 (C=O); IR (KBr pellet, cm⁻¹) 2286, 2482 [ν (B-H)]. Elemental anal. Found: C, 37.05; H, 8.79; N, 7.91. Calc. for $C_{11}H_{31}B_{11}N_2O_3$: C, 36.85; H, 8.72; N, 7.82%.

1-Methyl-2-[propyl-N-(methylcarbonyl-L-valine)amine]-1,2-dicarbadodecaborane (6e)

A 3.96 mmol (1.01 g) sample of 1-methyl-2-(propylamine)-1,2-dicarbadodecaborane (6) and 3.93 mmol (0.91 g) of trimethylamineborylcarbonylvaline methylester were dissolved in anhydrous THF (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 21 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from acetone: pentane (7:3) to produce off-white crystals of 1-methyl-2-[propyl-N-(methylcarbonyl-L-valine)amine]-1,2-dicarbadodecaborane (6e) (0.81 g, 54% yield, m.p. >250 °C, decomposed). Spectroscopic and analytical data for **6e**: 1 H NMR (DMSO, relative to Me₄Si) δ 2.10 (2H, t, CH₂), 1.40 (2H, m, CH₂), 3.07 (2H, m, CH₂), 2.20 (3H, s, CH₃), 0.48-1.20 (12H, br, BH), 3.05 (1H, d, CH), 3.89 (3H, s, CH₃), 1.17 (6H, d, CH₃), 1.68 (1H, m, CH), 5.42 (2H, br, NH₂); 11 B NMR (DMSO, relative to BF₃·OEt₂) δ -7.71 $(1B, J_{(BH)} = 134.8 \text{ Hz}), -10.16 (1B, J_{(BH)} = 132.8 \text{ Hz}), -11.24$ (2B, $J_{(BH)} = 143.2 \text{ Hz}$), -14.26 (2B, $J_{(BH)}$ unresolved), -16.38 $(4B, J_{(BH)} \text{ unresolved}), -10.41 (1B, J_{(BH)} = 104.0 \text{ Hz});$ ¹³C NMR (DMSO, relative to Me₄Si) δ 72.80, 77.90 (C_{cage}), 54.30 (OCH₃), 44.00, 27.00 (CH), 22.00 (CH₃), 162.40 (C=O); IR (KBr pellet, cm⁻¹) 2277, 2528 [ν (B–H)]. Elemental anal. Found: C, 40.55;

H, 9.21; N, 7.30. Calc. for $C_{13}H_{35}B_{11}N_2O_3$: C, 40.41; H, 9.13; N, 7.25%.

1-Methyl-2-[propyl-N-(methylcarbonyl-Ltyrosine)amine]-1,2-dicarbadodecaborane (6f)

A 4.08 mmol (1.04 g) sample of 1-methyl-2-(propylamine)-1,2dicarbadodecaborane (6) and 3.94 mmol (1.16 g) of trimethylamineborylcarbonyltyrosine methylester were dissolved in anhydrous THF (35 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 25 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from dichloromethane: acetone: pentane (5:3:2) to produce yellowish-white crystals of 1-methyl-2-[propyl-N-(methylcarbonyl-L-tyrosine)amine]-1,2-dicarbadodecaborane (6f) (0.86 g, 49% yield, m.p. >250 °C, decomposed). Spectroscopic and analytical data for 6f: ¹H NMR (DMSO, relative to Me₄Si) δ 2.14 (2H, t, CH₂), 1.42 (2H, m, CH₂), 3.19 (2H, m, CH₂), 2.07 (3H, s, CH₃), 0.40-1.16 (12H, br, BH), 3.81 (3H, s, CH₃), 3.01 (1H, t, CH), 2.99 (2H, d, CH₂), 7.65 (4H, m, aromatic), 5.39 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ -7.76 (1B, $J_{(BH)} = 131.4$ Hz), -11.01 (1B, $J_{\text{(BH)}} = 141.1 \text{ Hz}$), $-13.26 \text{ (2B, } J_{\text{(BH)}} = 141.3 \text{ Hz}$), $-15.61 \text{ (2B, } J_{\text{(BH)}} = 141.3 \text{ Hz}$) $J_{(BH)}$ unresolved), -16.44 (4B, $J_{(BH)}$ unresolved), -9.24 (1B, $J_{\rm (BH)} = 104.6 \text{ Hz}$); ¹³C NMR (DMSO, relative to Me₄Si) δ 73.40, 76.80 (C_{cage}), 163.80 (C=O), 54.20 (OCH₃), 25.00 (CH₂), 46.00 (CH), 128.60–131.00 (aromatic); IR (KBr pellet, cm⁻¹) 2450, 2563 [v(B–H)]. Elemental anal. Found: C, 45.35; H, 7.99; N, 6.44. Calc. for C₁₇H₃₅B₁₁N₂O₄: C, 45.33; H, 7.83; N, 6.22%.

1-Phenyl-2-[propyl-N-(cyanoborane)amine]-1,2dicarbadodecaborane (8a)

A 3.14 mmol (1.01 g) sample of 1-phenyl-2-(aminopropyl)-1,2-dicarbadodecaborane (8) and 3.15 mmol (0.32 g) of trimethylaminecyanoborane were dissolved in anhydrous THF (20 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 11 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from methylene chloride: pentane (7:1) to produce white crystals of 1-phenyl-2-[propyl-N-(cyanoborane)amine]-1,2-dicarbadodecaborane (8a) (0.68 g, 67% yield; m.p. 105–106 °C). Spectroscopic and analytical data for 8a: ¹H NMR (DMSO, relative to Me₄Si) δ 2.12 (2H, t, CH₂), 1.39 (2H, m, CH₂), 3.03 (2H, m, CH₂), 0.46–1.48 (12H, br, BH), 7.80–8.10 (5H, m, phenyl), 5.12 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ -7.18 (1B, $J_{(BH)} = 129.8$ Hz), -9.25 (1B, $J_{\text{(BH)}} = 133.8 \text{ Hz}$), $-11.32 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz}$), $-13.36 \text{ (2B, } J_{\text{(BH)}} = 140.28 \text{ Hz})$ $J_{\rm (BH)}$ unresolved), -15.71 (4B, $J_{\rm (BH)}$ unresolved), -12.26 (1B, $J_{\rm (BH)} = 110.0 \, \rm Hz); ^{13} \rm C \, NMR \, (DMSO, \, relative \, to \, Me_4Si) \, \delta \, 89.20,$ 85.00 (C_{cage}), 127.80 (aromatic), 118.00 (CN); IR (KBr pellet, cm⁻¹) 2429, 2380 [ν (B–H)]. Elemental anal. Found: C, 45.59; H, 8.18; N, 8.91. Calc. for C₁₂H₂₅B₁₁N₂: C, 45.57; H, 7.97; N, 8.86%.

Alternative method for 8a

A 2.82 mmol (1.00 g) sample of 1-phenyl-2-(aminopropyl)-1,2-dicarbadodecaborane hydrochloride (7) and sodium cyanoborohydride (0.35 g, 5.64 mmol) were dissolved in anhydrous DME (15 ml) under nitrogen atmosphere. The resulting solution was refluxed and monitored by 11B NMR spectra. After 16.5 h of refluxing, the reaction flask was cooled to room temperature and then filtered through a glass frit to collect a clear filtrate. The white solid, collected on the frit (identified as NaCl) was discarded. The solvent, DME, was then removed from the filtrate under reduced pressure. The resulting crude white residue was purified by column chromatography (7.3: EtOAc: hexane) to isolate a white crystalline solid, identified as 8a, in 84% yield (0.75 g, 2.36 mmol). Spectroscopic and analytical data were the same

1-Phenyl-2-[propyl-N-(carbomethoxyborane)amine]-1,2-dicarbadodecaborane (8b)

A 3.20 mmol (1.02 g) sample of 1-phenyl-2-(aminopropyl)-1,2-dicarbadodecaborane (8) and 3.14 mmol (0.41 g) of trimethylaminecarbomethoxyborane were dissolved in anhydrous THF (25 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by ¹¹B NMR spectroscopy. After 11 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from chloroform:pentane (3:1) to produce white crystals of 1-phenyl-2-[propyl-N-(carbomethoxyborane)amine]-1,2-dicarbadodecaborane (8b) (0.76 g, 68% yield; m.p. 125 °C). Spectroscopic and analytical data for **8b**: ¹H NMR (DMSO, relative to Me₄Si) δ 2.20 (2H, t, m, CH₂), 1.43 (2H, m, CH₂), 3.12 (2H, m, CH₂), 3.73 (3H, s, CH₃), 0.60–1.43 (12H, br, BH), 7.82–7.98 (5H, m, phenyl), 5.17 (2H, br, NH₂); ^{11}B NMR (DMSO, relative to BF₃·OEt₂) δ -7.21 (1B, $J_{(BH)} = 126.3 \text{ Hz}$), -9.18 (1B, $J_{(BH)} = 130.8 \text{ Hz}$), -10.23 (2B, $J_{(BH)} = 139.62$ Hz), -13.13 (2B, $J_{(BH)}$ unresolved), -15.58 (4B, $J_{(BH)}$ unresolved), -9.02 (1B, $J_{(BH)}$ 98.0 Hz); 13 C NMR (DMSO, relative to Me₄Si) δ 88.40, 86.10 (C_{cage}), 129.50 (aromatic), 172.00 (C=O), 53.4 (OCH₃); IR (KBr pellet, cm $^{-1}$) 2412, 2592 [ν(B–H)]. Elemental anal. Found: C, 44.74; H, 8.22; N, 3.95. Calc. for C₁₃H₂₈B₁₁NO₂: C, 44.72; H, 8.04; N, 4.01%.

1-Phenyl-2-[propyl-N-(methylcarbonyl-L-

phenylalanine)amine]-1,2-dicarbadodecaborane (8c) A 3.17 mmol (1.01 g) sample of 1-phenyl-2-(propylamine)-1,2dicarbadodecaborane (8) and 3.14 mmol (0.87 g) of trimethylamineborylcarbonylphenylalanine methylester were dissolved in anhydrous THF (15 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 12 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from acetone: chloroform: pentane (7:2:1) to produce white crystals of 1-phenyl-2-[propyl-N-(methylcarbonyl-Lphenylalanine)amine]-1,2-dicarbadodecaborane (8c) (0.95 g, 60% yield, m.p. >250°C, decomposed). Spectroscopic and

analytical data for 8c: ¹H NMR (DMSO, relative to Me₄Si) δ 2.19 (2H, t, CH₂), 1.38 (2H, m, CH₂), 3.01 (2H, m, CH₂), 0.75–1.33 (12H, br, BH), 3.78 (3H, s, CH₃), 3.01 (1H, t, CH), 3.12 (2H, d, CH₂), 7.26–7.90 (10H, m, aromatic), 5.15 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃ · OEt₂) δ –7.10 (1B, $J_{\rm (BH)}$ = 126.7 Hz), -9.31 (1B, $J_{\rm (BH)}$ = 135.1 Hz), -11.28 (2B, $J_{\rm (BH)}$ = 141.62 Hz), -13.72 (2B, $J_{\rm (BH)}$ unresolved), -15.52 (4B, $J_{\rm (BH)}$ unresolved), -8.30 (1B, $J_{\rm (BH)}$ = 94.0 Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 89.20 (C_{cage}), 168.00 (C=O), 128.6 (aromatic), 53.9 (OCH₃), 24.00 (CH₂), 42.00 (CH); IR (KBr pellet, cm⁻¹) 2444, 2573 (ν (B-H)). Elemental anal. Found: C, 53.25; H, 7.55; N, 5.42. Calc. for C₂₂H₃₇B₁₁N₂O₃: C, 53.22; H, 7.51; N, 5.64%.

1-Phenyl-2-[propyl-N-(methylcarbonyl-L-alanine)amine]-1,2-dicarbadodecaborane (8d)

A 3.26 mmol (1.04 g) sample of 1-phenyl-2-(propylamine)-1,2dicarbadodecaborane (8) and 3.14 mmol (0.64 g) of trimethylamineborylcarbonylalanine methylester were dissolved in anhydrous THF (25 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by 11B NMR spectroscopy. After 8 h, the solvent was removed under reduced pressure and the crude yellow solid product was then recrystallized from acetone: pentane (7:1) to produce yellow crystals of 1-phenyl-2-[propyl-N-(methylcarbonyl-L-alanine)amine]-1,2-dicarbadodecaborane (8d) (0.79 g, 59% yield, m.p. >200 °C, decomposed). Spectroscopic and analytical data for 8d: ${}^{1}H$ NMR (DMSO, relative to Me₄Si) δ 2.21 (2H, t, CH₂), 1.41 (2H, m, CH₂), 3.11 (2H, m, CH₂), 0.46–1.28 (12H, br, BH), 1.12 (3H, d, CH₃), 3.82 (3H, s, CH₃), 3.10 (1H, q, CH), 7.82 (5H, m, aromatic), 5.25 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ – 7.24 (1B, $J_{(BH)}$ = 129.2 Hz), –10.01 (1B, $J_{\text{(BH)}} = 136.8 \text{ Hz}$), $-11.76 \text{ (2B, } J_{\text{(BH)}} = 138.8 \text{ Hz}$), $-13.68 \text{ (2B, } J_{\text{(BH)}} = 138.8 \text{ Hz}$) $J_{(BH)}$ unresolved), -15.84 (4B, $J_{(BH)}$ unresolved), -10.01 (1B, $J_{\rm (BH)} = 94.6$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 88.70, 84.30 (C_{cage}), 166.40 (C=O), 128.0 (aromatic), 52.00 (OCH₃), 42.00 (CH); IR (KBr pellet, cm⁻¹) 2449, 2375 [ν (B-H)]. Elemental anal. Found: C, 45.75; H, 8.00; N, 6.67. Calc. for C₁₆H₃₃B₁₁N₂O₃: C, 45.71; H, 7.91; N, 6.70%.

1-Phenyl-2-[propyl-N-(methylcarbonyl-L-valine)amine]-1,2-dicarbadodecaborane (8e)

A 3.14 mmol (1.01 g) sample of 1-phenyl-2-(propylamine)-1,2-dicarbadodecaborane (8) and 3.19 mmol (0.73 g) of trimethylamineborylcarbonylvaline methylester were dissolved in anhydrous THF (25 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by $^{11}\mathrm{B}$ NMR spectroscopy. After 33 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from dichloromethane:chloroform:pentane (5:4:1) to produce yellow crystals of 1-phenyl-2-[propyl-*N*-(methylcarbonyl-L-valine)amine]-1,2-dicarbadodecaborane (8e) (0.83 g, 58% yield, m.p. >200 °C, decomposed). Spectroscopic and analytical data for 8e: $^{1}\mathrm{H}$ NMR (DMSO, relative to Me₄Si) δ 2.16

(2H, t, CH₂), 1.44 (2H, m, CH₂), 3.08 (2H, m, CH₂), 0.5–1.20 (12H, br, BH), 3.76 (3H, s, CH₃), 3.07 (1H, d, CH), 1.71 (1H, m, CH), 1.16 (6H, d, CH₃), 7.78 (5H, m, aromatic), 5.42 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ – 7.18 (1B, $J_{\rm (BH)}$ = 127.3 Hz), -9.42 (1B, $J_{\rm (BH)}$ = 137.2 Hz), -11.42 (2B, $J_{\rm (BH)}$ = 143.4 Hz), -14.07 (2B, $J_{\rm (BH)}$ unresolved), -15.98 (4B, $J_{\rm (BH)}$ unresolved), -8.90 (1B, $J_{\rm (BH)}$ = 89.0 Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 86.42, 83.40 (C_{cage}), 168.20 (C=O), 129.5 (aromatic), 54.00 (OCH₃), 21.00 (CH₃), 44.26 (CH); IR (KBr pellet, cm⁻¹) 2456, 2532 [ν (B-H)]. Elemental anal. Found: C, 48.33; H, 8.42; N, 6.27. Calc. for C₁₈H₃₇B₁₁N₂O₃: C, 48.21; H, 8.31; N, 6.25%.

1-Phenyl-2-[propyl-N-(methylcarbonyl-L-tyrosine)amine]-1,2-dicarbadodecaborane (8f)

A 3.23 mmol (1.03 g) sample of 1-phenyl-2-(propylamine)-1,2-dicarbadodecaborane (8) and 3.14 mmol (0.92 g) of trimethylamineboryltyrosine methylester were dissolved in anhydrous THF (15 ml) under nitrogen atmosphere. The mixture was heated to reflux and the extent of the reaction was monitored by ¹¹B NMR spectroscopy. After 12 h, the solvent was removed under reduced pressure and the crude white solid product was then recrystallized from chloroform: pentane (9:1) to produce white crystals of 1-phenyl-2-[propyl-N-(methylcarbonyl-L-tyrosine)amine]-1,2-dicarbadodecaborane (8f) (0.85 g, 52% yield, m.p. >250 °C, decomposed). Spectroscopic and analytical data for 8f: ¹H NMR (DMSO, relative to Me₄Si) δ 2.11 (2H, t, CH₂), 1.47 (2H, m, CH₂), 3.09 (2H, m, CH₂), 0.50-1.30 (12H, br, BH), 2.98 (2H, d, CH₂), 3.81 (3H, s, CH₃), 3.01 (1H, t, CH), 7.30-7.90 (9H, m, aromatic), 5.30 (2H, br, NH₂); ¹¹B NMR (DMSO, relative to BF₃ · OEt₂) δ -7.22 (1B, $J_{(BH)} = 125.6$ Hz), -8.89 (1B, $J_{\text{(BH)}} = 129.6 \text{ Hz}$), $-10.92 \text{ (2B, } J_{\text{(BH)}} = 136.4 \text{ Hz}$), -13.48 $(2B, J_{(BH)} \text{ unresolved}, -15.94 \text{ 4B}, J_{(BH)} \text{ unresolved}), -9.20 (1B,$ $J_{\rm (BH)} = 99.0 \, \rm Hz); ^{13} \rm C \, NMR \, (DMSO, \, relative \, to \, Me_4Si) \, \delta \, 89.80,$ 85.60 (C_{cage}), 168.40 (C=O), 129.00-131.50 (aromatic), 54.20 (OCH₃), 24.80 (CH₂), 44.00 (CH); IR (KBr pellet, cm⁻¹) 2552, 2386 [ν(B–H)]. Elemental anal. Found: C, 51.66; H, 7.32; N, 5.49. Calc. for C₂₂H₃₇B₁₁N₂O₄: C, 51.56; H, 7.28; N, 5.47%.

1,2-[N-(Trimethylamineborane)carboxyl]-1,2-dicarbadodecaborane (**9a**)

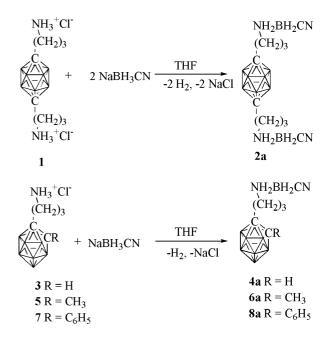
An 8.55 mmol (5.0 ml of 1.7 M in cyclohexane) sample of *n*-BuLi was syringed into a cold solution of 1,2-bis-(carboxy)-1,2-dicarbadodecaborane (1.00 g, 4.27 mmol) in DME. After warming to room temperature, a DME solution (1.60 g, 8.57 mmol) of trimethylaminemonoiodoborane (Me₃NBH₂I) was added and then refluxed for 10 h and was monitored by running ¹¹B NMR spectra of the products. After cooling the flask to room temperature, the solvent was removed *in vacuo* and the resulting crude white solid residue was purified by column chromatography (ethylacetate (90%)/hexane(10%)) to isolate white crystals, identified as 1,2-[*N*-(trimethylamineborane)carboxyl]-1,2-dicarbadodecaborane (9a), in 58% (0.84 g) yield. Spectroscopic and analytical data for 9a: ¹H NMR (DMSO,

relative to Me₄Si) δ 0.50–1.53 (14H, br, BH), 2.20 (18H, s, CH₃); ¹¹B NMR (DMSO, relative to BF₃·OEt₂) δ –5.86 (2B, $J_{\text{(BH)}} = 144.0 \text{ Hz}$), –9.21 (2B, $J_{\text{(BH)}} = 151.0 \text{ Hz}$), –12.82 (4B, $J_{\text{(BH)}} = 160.0 \text{ Hz}$), –14.01 (2B, $J_{\text{(BH)}} = 172.0 \text{ Hz}$), –10.21 (2B, $J_{\text{(BH)}} = 100.0 \text{ Hz}$); ¹³C NMR (DMSO, relative to Me₄Si) δ 72.60 (C_{cage}), 178.00 (C=O), 40.4 (NCH₃); IR (KBr pellet, cm⁻¹) 2571, 2399 [ν (B-H)]. Elemental anal. Found: C, 32.30; H, 8.66; N, 7.79. Calc. for C₁₀H₃₂B₁₂N₂O₄: C, 32.10; H, 8.62; N, 7.49%.

1-Methyl-2-[N-(trimethylamineborane)carboxyl]-1,2-dicarbadodecaborane (**10**a)

A 4.93 mmol (3.0 ml of 1.7 M in cyclohexane) sample of n-BuLi was syringed into a cold solution of 1-methyl-2-(carboxy)-1,2-dicarbadodecaborane (1.00 g, 4.98 mmol) in DME. After warming to room temperature, a DME solution (0.92 g, 4.95 mmol) of trimethylaminemonoiodoborane (Me₃NBH₂I) was added and then refluxed for 7 h and was monitored by running 11B NMR spectra of the products. After cooling the flask to room temperature, the solvent was removed in vacuo and the resulting crude off-white solid residue was purified by column chromatography (ethylacetate (70%)/hexane(30%)) to isolate off-white crystals, identified as 1-methyl-2-[N-(trimethylamineborane)carboxyl]-1,2dicarbadodecaborane (10a), in 56% (0.73 g) yield. Spectroscopic and analytical data for 10a: ¹H NMR (DMSO, relative to Me₄Si) δ 0.46-1.58 (12H, br, BH), 2.26 (3H, s, CH₃), 2.08 (9H, s, CH₃); ^{11}B NMR (DMSO, relative to $BF_3\cdot OEt_2)~\delta~-7.72$ (1B, $J_{(BH)} = 125.8 \text{ Hz}$), -9.48 (1B, $J_{(BH)} = 141.8 \text{ Hz}$), -12.24 $(2B, I_{(BH)} = 145.8 \text{ Hz}), -14.15 (2B, I_{(BH)} \text{ unresolved}), -15.98$ (4B, $J_{(BH)}$ unresolved), -10.41 (1B, $J_{(BH)} = 97.0$ Hz); ¹³C NMR (DMSO, relative to Me₄Si) δ 68.40, 72.68 (C_{cage}), 176.00 (C=O), 41.60 (NCH₃); IR (KBr pellet, cm⁻¹) 2479, 2386 [ν (B–H)]. Elemental anal. Found: C, 30.59; H, 8.88; N, 5.37. Calc. for $C_7H_{24}B_{11}NO_2$: C, 30.77; H, 8.86; N, 5.13%.

1-Phenyl-2-[N-(trimethylamineborane)carboxyl]-1,2-dicarbadodecaborane (**11a**)


A 3.78 mmol (2.7 ml of 1.7 M in cyclohexane) sample of n-BuLi was syringed into a cold solution of 1-phenyl-2-(carboxy)-1,2-dicarbadodecaborane (1.00 g, 3.79 mmol) in DME. After warming to room temperature, a DME solution (0.70 g, 3.81 mmol) of trimethylaminemonoiodoborane (Me₃NBH₂I) was added and then refluxed for 15 h and was monitored by running ¹¹B NMR spectra of the products. After cooling the flask to room temperature, the solvent was removed in vacuo and the resulting crude off-white solid residue was purified by column chromatography [ethylacetate (70%)/hexane (20%)/dichloromethane(10%)] to isolate cream crystals, identified as 1-phenyl-2-[N-(trimethylamineborane)carboxyl]-1,2dicarbadodecaborane (11a), in 54% (0.65 g) yield. Spectroscopic and analytical data for 11a: ¹H NMR (DMSO, relative to Me₄Si) δ 0.53–1.46 (12H, br, BH), 2.12 (9H, s, CH₃), 7.60–8.00 (5H, m, phenyl); ¹¹B NMR (DMSO, relative to BF₃ · OEt₂) δ -7.18 (1B, $J_{(BH)} = 131.8 \text{ Hz}$), -9.62 (1B, $J_{(BH)} = 132.9 \text{ Hz}$), -11.48 (2B, $J_{(BH)} = 142.7$ Hz), -13.68 (2B, $J_{(BH)}$ unresolved), -15.89 (4B, $J_{(BH)}$), -11.02 (1B, $J_{(BH)} = 90.0$ Hz); ¹³C NMR

(DMSO, relative to Me₄Si) δ 75.80, 85.60 (C_{cage}), 128.60 (aromatic), 182.00 (C=O), 42.20 [NCH₃]; IR (KBr pellet, cm⁻¹) 2488, 2389 [ν (B-H)]. Elemental anal. Found: C, 43.11; H, 7.88; N, 4.28.Calc. for C₁₂H₂₆B₁₁NO₂: C, 42.99; H, 7.82; N, 4.18%.

RESULTS AND DISCUSSION

Synthesis and characterization

A number of carboranylamineboranes and esters were synthesized by the amine exchange reaction of the $bis(C_{cage}-amine)$ carborane, $1,12-[(CH_2)_3NH_2]_2-1,12-C_2B_{10}H_{10}$ (2) with the amineboranes of the type Me₃NBH₂X to produce a series of new carboranylamineboranes of the form 1,12- $[(CH_2)_3NH_2BH_2X]_2\text{--}1,12\text{--}C_2B_{10}H_{10} \ \ [X=CN \ \ \textbf{(2a), COOCH}_3$ (2b), CONHEt (2c), CONHCH(CH₂C₆H₅)COOMe (2d), CONHCH(CH₃)COOMe (2e), CONHCH(CHMe₂)COOMe (2f), CONHCH(4-CH₂C₆H₄OH)COOMe (2g)], as shown in Scheme 1. The yields ranged from 78% for 2a to 50% for 2g. In general, the reaction with the amineboranes, to produce 2a-2c, gave yields in the region of 70%, whereas the amideborane products, 2d-2g, had yields in the region of 50%. Since the X groups associated with the amideboranes are substantially larger than those of the amineboranes (see Scheme 1), it is not known whether the consistently lower yields for the former are due to steric effects or the influence of the amide linkage. The reaction of $1,12-[(CH_2)_3NH_3Cl]_2-1,12-C_2B_{10}H_{10}$ (1) with NaBH₃CN (commercially available from Aldrich Chemical Company) provided an alternate route to 2a at a higher yield (86%) (see Scheme 2). However, the method outlined in Scheme 1 is a more general synthetic route with only slightly lower yields. We also synthesized 2h (Ccage-amine) carborane, $1-(CH_2NH_2BH_2CN)-1$, $2-C_2B_{10}H_{10}$ shown in Scheme 1 to

Scheme 2. Synthetic of carboranyl amineboranes.

show that methyl derivatives of aminecarbonylboranes can also be synthesized in good yields.

An additional series of novel amine and amide carboranylboranes, $4\mathbf{a}-4\mathbf{d}$, $6\mathbf{a}-6\mathbf{f}$, and $8\mathbf{a}-8\mathbf{f}$, could be synthesized from the reaction of the monoamine carboranes, $1-[(CH_2)_3NH_2]-2-R-1,2-C_2B_{10}H_{10}$ [R=H (4), CH_3 (6) and C_6H_5 (8)] with the trimethyl amine boranes, Me_3NBH_2X , where X spans the same substituent groups as used with the bis(amine)-p-carborane (2). The formulations and methods of preparation are summarized in Schemes 1 and 2. In general, the yields for these reactions are in the range of 77% (6a) to 52% (8f) and parallel those found for the bis-p-carboranes, $2\mathbf{a}-2\mathbf{g}$. As with the bis(amine)-p-carboranes, the amideboranes gave lower yields than did the amineboranes. The mono- and bis-amine carboranes are also similar, in that the use of $NaBH_3CN$ rather than Me_3NBH_2CN gave improved yields of $4\mathbf{a}$, $5\mathbf{a}$ and $6\mathbf{a}$.

Schemes 1 and 2 show the different routes to the carboranylamineboranes; it is also possible to synthesize a series of carboranyl boronesters, as shown in Scheme 3. As shown in the scheme, the reaction of either 1,2-(COOH)₂-1,2-C₂B₁₀H₁₀ (9) or 1-(COOH)-2-(R)-1,2-C₂B₁₀H₁₀ [R = CH₃ (10), C₆H₅ (11)] with BuLi followed by treatment with Me₃NBH₂I produced the corresponding boranoesters, 1,2-(COOBH₂NMe₃)₂-1,2-C₂B₁₀H₁₀ (9a) or 1-(COOBH₂NMe₃)-2-(R)-1,2-C₂B₁₀H₁₀ [R = CH₃ (10a), C₆H₅ (11a)]. The yields of these reactions are quite similar being 58%, 56% and 54% for 9a, 10a and 11a respectively. The low yields for these compounds are due to loss of the product during work up. Although these yields are only modest, they are sufficiently high so as to provide a path for compounds that could be tested for therapeutic behavior.

All the compounds were characterized by ¹H, ¹¹B, ¹³C NMR and IR spectroscopy. The IR spectra of all the products show the expected absorptions for the carborane B–H stretching in the region 2500–2615 cm⁻¹, with the exopolyhedral borane bands appearing at slightly lower energies (2238–2491 cm⁻¹). In the same way, the ¹H, ¹¹B, ¹³C NMR spectra show resonances that are consistent with the formulations given in Schemes 1–3. For example, the ¹³C NMR spectra of

Scheme 3. Synthesis of carboranyl esters.

compounds containing cyano functionality (2a, 4a, 6a, 8a) showed a peak in the range of 110-116 ppm and peaks between 75 and 88 ppm due to the cage carbon atoms of the carborane. For compounds containing a carbomethoxy group (2b, 4b, 6b, 8b), 13C NMR spectra showed a peak in the range of 174–182 ppm (carbonyl), a peak at 54–58 ppm for the OCH₃ group and peaks between 76 and 87 ppm due to the cage carbon atoms of the carborane. For compounds containing a carbamoyl group (2c, 4c), ¹³C NMR spectra showed a peak in the range of 162–176 ppm (carbonyl), a peak at 42–48 ppm for the NCH₂ group and peaks between 77 and 86 ppm due to the cage carbon atoms of the carborane. For compounds containing amino acids (2d-g, 6c-f, 8c-f), ¹³C NMR spectra showed peaks corresponding to the side chain of the phenylalanine, alanine, valine and tyrosine amino acids and peaks between 76 and 89 ppm due to the cage carbon atoms of the carborane. For compounds **9a, 10a** and **11a,** ¹³C NMR spectra showed a peak in the range of 176–182 ppm for the carbonyl group and peaks between 75 and 87 ppm due to the cage carbon atoms of the carborane. The $^{11}\mbox{B}$ NMR spectra showed peaks in the range of -7 to -16 ppm corresponding to the carborane present in all the compounds. For disubstituted amino p-carborane (2a-2g), two peaks were observed in the region -6.5 to -16.34 ppm. For monosubstituted amino o-, methyl- and phenyl-carboranes (4a-d, 6a-f, 8a-f), ¹¹B NMR spectra showed five peaks in the range of -6.67 to -16.00 ppm corresponding to the carborane cage. For compounds 9a, 10a, and 11a, five peaks in the range of -5.86 to -15.97 ppm were observed in ¹¹B NMR spectra.

Acknowledgements

This work was supported by grants from the National Science Foundation (CHE-9988045), the Robert A. Welch Foundation (N-1322 to JAM), the donors of the Petroleum Research Fund, administered by the American Chemical Society, and Northern Illinois University through a Presidential Research Professorship (to NSH).

REFERENCES

- Heying TL, Ager Jr JW, Clark SL, Mangold DJ, Goldstein HL, Hillman M, Polak RJ, Szymanski JW. Inorg. Chem. 1963; 2: 1089.
- Fein MM, Bobinski J, Mayes N, Schwartz N, Cohen MS. Inorg. Chem. 1963; 2: 1111.
- 3. Grimes RN. Carboranes. Academic Press: New York, 1970.
- 4. Bregadze VI. Chem. Rev. 1992; 92: 209.
- Hawthorne MF. Advances in Boron Chemistry, Siebert W, Ed. The Royal Society of Chemistry: UK, 1997; 261.
- Hawthorne MF. Contemporary Boron Chemistry, Davidson M, Hughes AK, Marder TB, Wade K (eds). The Royal Society of Chemistry: UK, 2000; 197.
- Soloway AH, Zhuo J-C, Rong F-G, Lunato AL, Ives DH, Barth RF, Anisuzzaman AKM, Barth CD, Barnum BA. J. Organometal. Chem. 1999; 581: 150.
- 8. Zhuo J-C, Tjarks W, Soloway AH, Cai J, Wang J, Barth RF, Adams DM, Eriksson S, Lunato AJ, Ji W. In *Contemporary Boron Chemistry*, Davidson M, Hughes AK, Marder TB, Wade K (eds). The Royal Society of Chemistry: UK, 2000; 127.

- 9. Endo Y. In Contemporary Boron Chemistry, Davidson M, Hughes AK, Marder TB, Wade K (eds). The Royal Society of Chemistry: UK, 2000; 139.
- 10. Takagaki M, Powell W, Sood A, Spielvogel BF, Hosmane NS, Kirihata M, Ono K, Masunaga SI, Kinashi Y, Miyatake SI, Hashimoto N. Radiat. Res. 2001; 156: 118.
- 11. Giese A, Westphal M. Neurosurgery 1996; 39: 235.

- 12. Wilson JG, Anisuzzaman AKM, Alam F, Soloway AH. Inorg. Chem. 1992; 31: 1955.
- 13. Spielvogel BF, Ahmed FU, McPhail AT. Inorg. Synth. 1989; 25: 79.
- 14. Sood A, Sood CK, Spielvogel BF, Hall IH. Eur. J. Med. Chem. 1989; **24**: 67.
- 15. Kahl SB, Kasar RA. J. Am. Chem. Soc. 1996; 118: 1223.