Crystallographic report

L-(-)-Dichloro(β -menthoxy-carbonylethyl)tin N,N-diethyldithiocarbamate

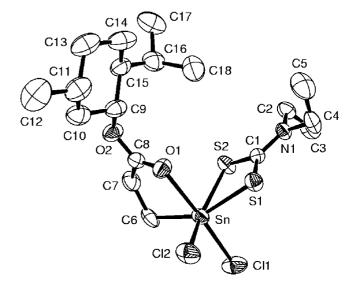
Laijin Tian^{1,2}, Zhicai Shang¹*, Qingsen Yu¹ and Liping Zhang²

¹Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Received 9 March 2004; Revised 9 April 2004; Accepted 12 April 2004

The tin atom in the title compound adopts a distorted octahedral geometry within a CCl₂OS₂ donor set. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; organotin; dithiocarbamate


COMMENT

The structural chemistry of estertin and organotin dithiocarbamates continues to be the focus of much research. The title complex exists as a discrete molecule and features a distorted octahedral geometry. The structure is comparable to the reported compound $\text{CH}_3\text{OCOCH}_2\text{CH}_2\text{SnCl}_2(S_2\text{CN}(\text{CH}_3)_2).}^4$

EXPERIMENTAL

A solution of NaS2CNEt2·3H2O (1.12 g, 6 mmol) dissolved in ethanol (40 ml) was added dropwise to a solution of β menthoxycarbonylethyltin trichloride (2.18 g, 6 mmol) in the solvent (40 ml) at room temperature. The reaction mixture was stirred for 1 h. The NaCl that formed was removed by filtration. The filtrate, after distilling off the excess solvent, yielded a crystalline solid, which was recrystallized from a dichloromethane/n-hexane (1:1, v/v) mixture. Yield 81%, m.p. 145–146 °C, $[α]_D^{25}$ – 49.2°. IR, ν: 1640 (vs, C=O), 1521 (vs, C-N), 998 cm⁻¹ (m, C-S). ¹H NMR (500 MHz, CDCl₃) δ: 5.07 (1H, dt, $J_{aa} = 10.9 \text{ Hz}$, $J_{ae} = 4.4 \text{ Hz}$, CHO), 3.75 (4H, q, J = 7.2 Hz, $2NCH_2$), 2.89 (2H, t, J = 7.5 Hz, $J(^{119}\text{Sn}-^{1}\text{H}) = 205.9 \text{ Hz}$, COCH₂), 1.87 (2H, t, J = 7.5 Hz, $J(^{119}\text{Sn}-^{1}\text{H}) = 111.4 \text{ Hz}$, $CH_{2}\text{Sn}$), 1.34 (6H, t, J = 7.2 Hz, $N(CH_2CH_3)_2$, 2.09–0.89 (9H, m), 0.93 (3H, d, J = 6.7 Hz, CH_3), 0.91 $(3H, d, J = 7.0 \text{ Hz}, CH_3), 0.80 \text{ ppm} (3H, d, J = 6.9 \text{ Hz}, CH_3) (Men).$ ¹³C NMR (125 MHz, CDCl₃) δ : 194.62 (C=S), 180.58 (C=O), 78.33 (OCH), 52.11 (NCH₂), 32.26 (SnCH₂, J(¹¹⁹/¹¹⁷Sn-C) = 959.6/916.0 Hz), 29.31 (CH₂CO, J(¹¹⁹Sn-C) = 75.0 Hz), 12.14 (NCH₂CH₃), 46.99, 40.40, 33.91, 31.30, 26.54, 23.29, 22.03, 20.80, 16.40 ppm (Men). Anal. Found: C, 39.28; H, 5.89; N, 2.40. Calc. for C₁₈H₃₃Cl₂O₂S₂Sn: C, 39.36; H, 6.06; N, 2.55%. Intensity data were collected at

Contract/grant sponsor: National Science Foundation of China; Contract/grant number: 20173050.

Figure 1. Molecular structure of one of the independent molecules of $MenOCOCH_2CH_2SnCl_2(S_2CN(CH_2CH_3)_2)$; hydrogen atoms are omitted for clarity. Selected geometric parameters: Sn-Cl1 2.3998(15), Sn-Cl2 2.4050(15), Sn-S1 2.4623(14), Sn-S2 2.6940(14), Sn-O1 2.372(4), Sn-C6 2.136(5) Å; Cl1-Sn1-Cl2 93.68(5), Cl1-Sn-O1 176.69(10), Cl2-Sn1-S2 159.68(5), S1-Sn1-C6 152.52(15)°.

293 K on a Bruker SMART CCD diffractometer using a colorless crystal $0.22 \times 0.38 \times 0.46 \text{ mm}^3$. $C_{18}H_{33}Cl_2NO_2S_2Sn$, M=549.16, monoclinic, $P2_1$, a=10.314(3), b=12.095(3), c=20.359(6) Å, $\beta=90.121(4)^\circ$, V=2539.8(13) Å 3 , Z=5, 9457 unique data ($\theta_{\text{max}}28.3^\circ$), R=0.045, wR=0.077. The Flack parameter is -0.020(17). The compound crystallizes with two independent molecules in the crystallographic asymmetric unit that do not differ from each other

²Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

^{*}Correspondence to: Zhicai Shang, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China. E-mail: shangzc@mail.hz.zj.cn

significantly. For clarity, only one molecule is shown in Fig. 1. Programs used: SHELXTL, WINGX, ORTEP. CCDC deposition number: 233185.

- Tiekink ERT. Main Group Met. Chem. 1992; 15: 161.
 Yin H, Wang C. Appl. Organometal. Chem. 2004; 18: 145.
- 4. Jung OS, Jeong JH, Sohn YS. Polyhedron 1989; 8: 1413.

REFERENCES

1. Balasubramanian R, Chohan ZH, Doidge-Harrison SMSV, Howie RA, Wardell JL. Polyhedron 1998; 16: 4283.