Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.699

Crystallographic report

$[Bis(3-pyridylacrylato)cadmium(II)]_n$

Yu-Mei Song, Rui Shi, Xi-Sen Wang, Hong Zhao and Ren-Gen Xiong*

Coordination Chemistry Institute, The State Key Laboratory of Coordination Chemistry Nanjing University, 210093 Nanjing, People's Republic of China

Received 14 April 2004; Revised 5 May 2004; Accepted 6 May 2004

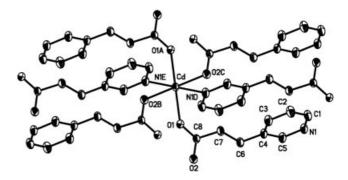
In [bis(3-pyridylacrylato)cadmium(II)]_n, the local coordination geometry around the cadmium center is based on an octahedron. The carboxylate acts as a tridentate ligand by bridging two cadmium atoms and binds a third cadmium atom via the pyridyl group with the result that a two-dimensional layered network is formed. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; in situ synthesis; deammoniation; cadmium

COMMENT

We have recently combined metal salts with potential 'spacer' organic ligands under hydrothermal conditions to produce a range of new materials.¹ Surprisingly, the reaction of $Cd(ClO_4)_2 \cdot 6H_2O$ with the ligand 3-(3-pyridyl)-3-aminopropionic acid gives the deammoniated product rather than amino-group-remaining product.² In the layer structure of [bis(3-pyridylacrylato)cadmium(II)]_n, the cadmium atom is located on a centre of inversion and has a distorted octahedral geometry, as shown in Fig. 1. Each carboxylate ligand acts as a bidentate linker to bridge two cadmium centers and the pyridyl group binds to a third cadmium atom, resulting in the formation of two-dimensional layer structure (Fig. 2).

EXPERIMENTAL


Hydrothermal treatment of Cd(ClO₄)₂·6H₂O (1.0 mmol) and 3-(3-pyridyl)-3-aminopropionic acid (1 mmol) over 1 day at 140 °C gave colorless crystalline needles. The yield was about 35% based 3-(3-pyridyl)-3-aminopropionic acid. Intensity data were collected at 293(2) K on a Bruker AXS Smart CCD for a colorless block 0.1 × 0.2 × 0.3 mm³. C₁₆H₁₂CdN₂O₄, M = 408.68, triclinic, $P\overline{1}$, a = 5.0270(4), b = 8.1075(6), c = 9.5250(7) Å, α = 69.442(1), β = 80.550(1), γ = 76.004(1)°, V = 351.35(5) ų, Z = 1, 2423 unique data (θ_{max} = 33.4°), R = 0.026 (2418 [I \geq 2 σ (I)] data), wR = 0.065 (all data).

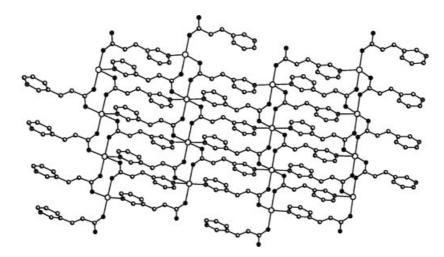
*Correspondence to: Ren-Gen Xiong, Coordination Chemistry Institute, The State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China.

E-mail: xiongrg@netra.nju.edu.cn

Contract/grant sponsor: Distinguished Young Scholar Fund; Contract/grant number: 20225103.

Contract/grant sponsor: Specialized Research Fund for the Doctoral Program of Higher Education; Contract/grant number: 20030284001.

Figure 1. Coordination geometry for [bis(3-pyridylacrylato)cad-mium(II)] $_n$; hydrogen atoms are omitted for clarity. Selected geometric parameters: Cd-O1 2.2833(14), Cd-O1A 2.3246(13), Cd-N1D 2.3926(15), C7-C6 1.324(2) Å; O1-Cd-O2B 90.12(5), O1-Cd-N1D 91.66(5), O1A-Cd-N1D 83.41(5) $^\circ$. Symmetry operations A: 1 - x, 1 - y, -z; B: 2 - x, 1 - y, -z; C: x - 1, y, z; D: 1 - x, 1 - y, 1 - z; E: x, y, z - 1.


Programs used: SAINT, SADABS, SHELX-97 and ORTEP. CCDC deposition number: 23 5636.

Acknowledgements

This work was supported by an award from the Distinguished Young Scholar Fund to R.-G. Xiong (no. 20225103) and by the Specialized Research Fund for the Doctoral Program of Higher Education (no. 20030284001).

REFERENCES

- 1. Xiong RG, Xue X, Zhao H, You XZ, Abrahams BF, Xue Z. Angew. Chem. Int. Ed. Engl. 2002; 41: 3800.
- 2. Qu ZR, Zhao H, Wang YP, Wang XS, Ye Q, Li YH, Xiong RG, Abrahams BF, Liu ZG, You XZ. Chem. Eur. J. 2004; 10: 53.

Figure 2. Two-dimensional layer structure of [bis(3-pyridylacrylato)cadmium(II)]_n; hydrogen atoms are omitted for clarity.