Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.781

Crystallographic report

Di(o-chlorobenzyl)tin(IV) bis(N-methylpiperazinyldithiocarbamate)

Han-Dong Yin* and Sheng-Cai Xue

Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China

Received 29 July 2003; Revised 7 August 2004; Accepted 8 August 2004

The tin atom in {(2-Cl-C₆H₄CH₂)₂Sn[S₂CN(CH₂CH₂)₂NCH₃]₂}₂ is in a skew-trapezoidal bipyramidal geometry defined by a C₂S₄ set with C-Sn-C 150.61(19)°. Centrosymmetric pairs associated via weak Sn· · · S to form a dimer. Copyright © 2004 John Wiley & Sons, Ltd.

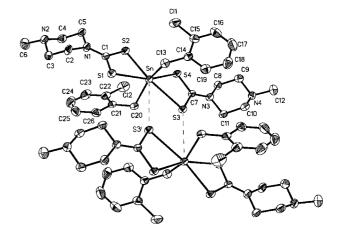
KEYWORDS: crystal structure; organotin; dithiocarbamate

COMMENT

The structural chemistry of organotin dithiocarbamates is both rich and diverse, so that monomeric, dimeric, and one-dimensional chain structures are known.¹⁻⁶ In the title structure (Fig. 1), the tin atom exists in skewtrapezoidal bipyramidal geometry and weakly bridged centrosymmetric dimers are found with Sn···S3i of 3.9071(12) Å.

EXPERIMENTAL

Na[N-methylpiperazinyldithiocarbamate] (2.0 mmol) was added to a CH₂Cl₂ solution (30 ml) of di(o-chlorobenzyl)tin dichloride (1.0 mmol) and stirred for 16 h at 30 °C. The precipitated NaCl was removed by filtration and the filtrate was concentrated to about 5 ml under reduced pressure. Hexane (5 ml) was added to this solution and immediately a precipitate was formed. The product was recrystallized from CH₂Cl₂-hexane to give colorless crystals; m.p. 147–148 °C. IR (KBr), ν: 1481, 1140, 1001, 545, 442 cm⁻¹. Intensity data were collected at 273 K on a Bruker Smart 1000 CCD for a block $0.31 \times 0.36 \times 0.47$ mm³. $C_{26}H_{34}Cl_2N_4S_4Sn$, M = 720.40, monoclinic, $P2_1/n$, a = 9.1174(12), b = 24.958(3), c = 13.9422(18) Å, $\beta = 104.088(2)^{\circ}$, V = 3077.2(7) Å³, Z = 4, 5424 unique data ($\theta_{\text{max}} = 25.0^{\circ}$), R = 0.039 (3927 data with $I \ge 2\sigma(I)$), wR = 0.105 (all data). Programs used: SHELXL and ORTEP. CCDC deposition number: 245406.


Acknowledgements

The National Natural Foundation of the People's Republic of China and the National Natural Foundation of Shandong Province are thanked for support.

*Correspondence to: Han-Dong Yin, Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China. E-mail: handongyin@lctu.edu.cn

Contract/grant sponsor: National Natural Foundation; Contract/grant number: 20771025.

Contract/grant sponsor: National Natural Foundation of Shandong Province; Contract/grant number: L2003B02.

Figure 1. The molecular structure of $\{(2-CI-C_6H_4CH_2)_2Sn[S_2$ CN(CH₂CH₂)₂NCH₃]₂; hydrogen atoms are omitted for clarity. Key geometric parameters: Sn-S1 2.8049(13), Sn-S2 2.5401(13), Sn-S3 2.8674(12), Sn-S4 2.5676(12), Sn-C13 2.184(5), Sn-C20 2.184(5) Å; S1-Sn-S2 67.49(4), S1-Sn-S3 131.37(4), S1-Sn-S4 162.38(4), S2-Sn-S3 160.79(4), S2-Sn-S4, 95.33(4), S3-Sn-S4 66.07(3), C13-Sn-C20 150.61(19)°.

REFERENCES

- 1. Tiekink ERT. Main Group Met. Chem. 1992; 15: 161.
- 2. Tiekink ERT. Main Group Met. Chem. 1993; 16: 129.
- 3. Yin HD, Wang CH, Ma CL, Wang Y, Zhang RF. Chin. J. Org. Chem. 2002; 22: 183.
- 4. Yin HD, Ma CL, Wang Y. Ind. J. Chem. A 2002; 41: 342.
- 5. Yin HD, Wang CH, Ma CL, Wang Y. Chin. J. Chem. 2002; 20: 913.
- 6. Yin HD, Wang CH, Wang Y, Ma CL. Chin. J. Chem. 2003; 21: 356.