Crystallographic report

Dichloro[bis(1-methylimidazole-2)disulfide]zinc(II)

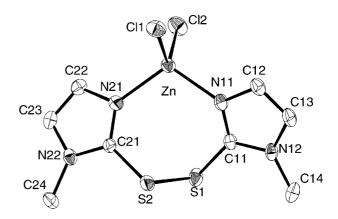
Yuki Matsunaga, Kiyoshi Fujisawa*, Nagina Amir, Yoshitaro Miyashita and Ken-ichi Okamoto

Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan

Received 21 September 2004; Accepted 22 September 2004

The Zn center in [ZnCl₂(L-S-S-L)], where L-S-S-L = bis(1-methylimidazole-2)disulfide, adopts a tetrahedral configuration defined by two Cl atoms and two N atoms from L-S-S-L, which was obtained by *in situ* oxidation of 1-methylimidazole-2-thione. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; zinc; disulfide bond; chelate


COMMENT

The $[ZnCl_2(L-S-S-L)]$ complex (Fig. 1), where L-S-S-L = bis(1-methylimidazole-2)disulfide, was obtained fortuitously by very slow oxidation of authenticated [ZnCl₂(mitH-S)₂] (mitH-S = 1-methylimidazoline-2-thione). The Zn(II) center has a tetrahedral configuration with ZnCl₂N₂ coordination type, in contrast to the ZnCl₂S₂ geometry found in [ZnCl₂(mitH-S)₂].¹ The bidentate ligand forms a sevenmembered chelate ring. The disulfide bond is twisted from one imidazole ring to the other, and intersects the ZnCl₂ plane. The S-S distance of 2.069(1) Å is almost the same as that of the free disulfide cation, which is 2.085(2) Å.² The C-S bonds in [ZnCl₂(L-S-S-L)] (which are 1.737(3) and 1.754(3) Å, as expected) are almost single bonds and they are longer than those in [ZnCl₂(mitH-S)₂] (1.709(4) and 1.714(5) Å), which contain π -character. Two imidazolyl rings in [ZnCl₂(mitH-S)₂] are splayed somewhat to avoid steric hindrance, whereas in [ZnCl₂(L-S-S-L)] the two imidazolyl rings are almost coplanar.

EXPERIMENTAL

The [ZnCl₂(L-S-S-L)] complex was obtained from the reaction between ZnCl₂ (0.69 g, 5.0 mmol) and mitH (1.16 g, 10 mmol) in CH₃OH solution (45 cm³). After filtration of a white powder and crystals of [ZnCl₂(mitH-S)₂]¹ (1.26 g, 69% yield), yellow crystals were formed by allowing the filtrate to stand at 0 °C for several months (0.06 g, 4% yield). Data were collected at -80 °C on a Rigaku/MSC Mercury CCD system for crystal dimensions 0.40 × 0.40 × 0.50 mm³. C₈H₁₀Cl₂N₄S₂Zn, M = 362.60, orthorhombic, Pbca, a = 8.5186(5),

Contract/grant sponsor: JSPS; Contract/grant numbers: 13555257; 14350471.

Figure 1. Molecular structure of $[ZnCl_2(L-S-S-L)]$; H atoms removed for clarity. Key geometric parameters: Zn-Cl1 2.259(1), Zn-Cl2 2.238(1), Zn-N11 2.023(3), Zn-N21 2.025(3), S1-S2 2.069(1), S1-Cl1 1.737(3), S2-C21 1.754(3) Å; Cl1-Zn-Cl2 117.39(4), Cl1-S1-S2 100.5(1), N11-Zn-N21 111.1(1), C21-S2-S1 101.4(1) $^{\circ}$.

b=13.0905(5) and c=24.5506(10) Å, V=2737.7(2) Å 3 , Z=8,3117 unique data $(2\theta_{\rm max}~55.0^{\circ})$, 3022 data with $I>2\sigma(I)$, R=0.035, $R_{w}=0.075$. Programs used: SIR92, DIRDIF99, CrystalClear and CrystalStructure. CCDC deposition number: 250494.

Acknowledgments

This research was supported in part by Grant-in-Aid for Scientific Research (B) Nos 13555257 and 14350471 and the 21st Century COE program from the Japan Society for the Promotion of Science.

REFERENCES

- Matsunaga Y, Fujisawa K, Amir N, Miyashita Y, Okamoto K. J. Coord. Chem. in press.
- 2. Aragoni MC, Arca M, Demartin F, Devillanova FA, Garau A, Isaia F, Lippolis V, Verani G. J. Am. Chem. Soc. 2002; **124**: 4538.

^{*}Correspondence to: Kiyoshi Fujisawa, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan. E-mail: kiyoshif@chem.tsukuba.ac.jp