Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.813

μ_2 -Diiodotetrakis(2-hydroxymethyl-1-methyl-1-imidazole-N³)dicadmium(II) bis[triiodo(2-hydroxymethyl-1-methyl-1imidazole-N3)cadmate(II)] dihydrate

Yang-Yi Yang^{1,2}, Lap Szeto², Gang-Feng Ouyang¹, Zhong-Qi Huang¹, Wing-Tak Wong^{1,2}* and Seik Weng Ng³

Received 23 August 2004; Revised 31 August 2004; Accepted 1 September 2004

There are two types of Cd in the title compound, the six-coordinated Cd atom in the cation is in a distorted octahedral geometry while the four-coordinated Cd in the anion shows a distorted tetrahedral geometry. Copyright © 2005 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; cadmium; 2-hydroxymethyl-1-methyl-1-imidazole; iodine

COMMENT

d10 metals, such as zinc(II) and cadmium(II) atoms, coordinated by rigid aromatic ligands often display intriguing photo properties.¹⁻³ The crystal structure of the title compound comprises a centrosymmetric dinuclear $[Cd_2I_2(2-hydroxymethyl-1-methyl-1-imidazole)_4]^{2+}$ mononuclear [CdI₃(2-hydroxymethyl-1-methyl-1imidazole)]- anions, and two lattice water molecules. As shown in Fig. 1, in the dinuclear cation, the independent Cd1 is chelated by the O and N atoms from a pair of imidazole ligands, and its coordination is completed with two μ_2 -I $^$ bridges, resulting in a distorted octahedral geometry. In the anion, Cd2 is coordinated by N atoms from the imidazole ligand, and three I atoms forming a distorted tetrahedral geometry; the Cd2-O3 distance of 2.905(18) Å is considered to be too long for a significant bonding interaction between these atoms.

EXPERIMENTAL AND RESULTS

2-Hydroxymethyl-1-methyl-1-imidazole (0.1 g), was dissolved in distilled water (3 ml), CdI₂ (0.1 g) in ethanol (5 ml)

E-mail: wtwong@hkucc.hku.hk

Contract/grant sponsor: The Hong Kong Research Grants Council. Contract/grant sponsor: The University of Hong Kong.

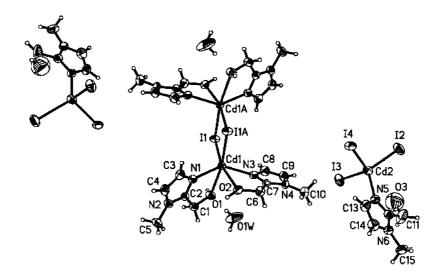
Contract/grant sponsor: University of Malaya.

was added and the solution was stirred in 50°C for 10 min. The pH was adjusted to ~7.5 by dilute NaOH and the solution was kept in the dark at room temperature. The colorless plate-like crystals deposited after 5 weeks, yield ~40%. Data collection was performed at 296(2) K on a Bruker AXS SMART CCD diffractometer (Mo–K α , $\lambda = 0.71073$ Å) for a crystal of $0.02 \times 0.35 \times 0.46 \text{ mm}^3$. $C_{30}H_{52}Cd_4I_8N_{12}O_8$, M=2173.64, triclinic, P-1; a = 7.7374(9), b = 10.378(1), c = 19.907(2) Å; $\alpha =$ 80.838(2), $\beta = 82.432(2)$, $\gamma = 68.265(2)^{\circ}$; $V = 1461.3(3) \text{ Å}^3$. R = 0.040 for 3688 of the 6663 reflections ($\theta_{\text{max}} = 27.5^{\circ}$) with $I > 2\sigma(I)$. Programs used were teXsan, SHELXL-97 and ORTEP. CCDC deposition number is 242787. The O3 atom was disordered and thus modelled isotropically.

Acknowledgements

We thank The Hong Kong Research Grants Council, The University of Hong Kong and University of Malaya for financial support.

REFERENCES


- 1. Ghedini M, La Deda M, Aiello I, Grisolia A, J. Chem. Soc., Dalton Trans., 2002; 3406.
- 2. Tao J, Tong ML, Shi JX, Chen XM, Ng SW. Chem. Commun. 2000;
- 3. Zheng SL, Yang JH, Yu XL, Chen XM and Wong WT. Inorg. Chem. 2004; 43: 830.

¹School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

²Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China

³Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

^{*}Correspondence to: Wing-Tak Wong, Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China.

