$Published \ online \ in \ Wiley \ InterScience \ (www.interscience.wiley.com). \ DOI:10.1002/aoc.850$

Crystallographic report

Bis{ μ -[O-cyclopentyl(4-methoxyphenyl) dithiophosphonato]1 κ :S,2 κ :S-[O-cyclopentyl(4-methoxyphenyl)dithiophosphonato]1 κ ²S,S'} dizinc(II)

Mehmet Karakus^{1*}, Hamza Yilmaz², Ece Bulak³ and Peter Lönnecke⁴

¹Department of Chemistry, Faculty of Arts and Sciences, Pamukkale University 20017 Kinikli/Denizli, Turkey

Received 3 September 2004; Revised 7 October 2004; Accepted 11 October 2004

The centrosymmetric $[Zn_2\{CH_3OC_6H_4P(OC_5H_9)S_2\}_4]$, features an eight-membered $Zn_2S_4P_2$ ring as a result of two bidentate bridging thiolate ligands; the remaining ligands are chelating. Copyright © 2005 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; dithiophosphonate; zinc(II)

COMMENT

Centrosymmetric $[Zn_2\{CH_3OC_6H_4P(OC_5H_9)S_2\}_4]$ with two bidentate bridging, leading to the formation of a $Zn_2S_4P_2$ ring, and two chelating ligands, conforms to the common structural motif adopted by Zn(1,1-dithiolate) $_2$ complexes (Fig. 1). 1

EXPERIMENTAL

The complex was prepared in 91% yield by the reaction of CH₃OC₆H₄P(OC₅H₉)(S)(SNH₄)² and ZnSO₄·7H₂O in water. Colourless crystals were obtained from a mixture of chloroform and isopropyl alcohol (3:1); m.p.: 169 °C. Anal. (calc.) for C₄₈H₆₄O₈P₄S₈Zn₂: C, 45.38 (45.03); H, 4.74 (5.04); S, 19.67 (20.04)%. IR data (cm⁻¹): 541 (PS_{sym}) and 653 (PS_{asym}). ¹H NMR (DMSO-d₆) δ (ppm): 7.87 (dd, 8H, ³J_{PH} = 13.71 Hz, J_{HH} = 8.67 Hz), 6.96 (dd, 8H, ⁴J_{PH} = 2.30 Hz, J_{HH} = 8.80 Hz), 5.02 (m, 4H), 3.78 (s, 12H, CH₃O-), 1.58 (m, 32H). ¹³C NMR (DMSO-d₆) δ (ppm): 134.25 (C-1, ¹J_{PC} = 119 Hz), 132.38 (C-2, ²J_{PC} = 13.60 Hz), 113.80 (C-3, ³J_{PC} = 15.10 Hz), 161.70 (C-4, ⁴J_{PC} = 3.04 Hz), 78.40 (C-5, ²J_{PC} = 7.20 Hz, O-CH-, Cp), 34.50 (C-6, ³J_{PC} = 4.20 Hz, Cp), 56.17 (CH₃O-), 23.78 (C-8, Cp). ³¹P NMR (DMSO) δ (ppm): 99.69. Intensity data were collected at 293(2) K on Siemens Smart CCD diffractometer for a crystal

Figure 1. A view of [Zn₂{CH₃OC₆H₄P(OC₅H₉)S₂}₄]; hydrogen atoms omitted for clarity. Key geometric parameters: Zn–S1 2.4671(15), Zn–S2 2.3358(14), Zn–S3 2.3211(16), Zn–S4 2.3633(15), Zn–S4′ 2.3633(15) Å; S1–Zn–S3 108.19(16), S3–Zn–S4 103.70(6), S2–Zn–S3 131.20(6), S2–Zn–S4′ 118.90(6), S1–Zn–S2 85.52(5), S1–Zn–S4′ 102.87(6)°. Symmetry operation on primed atoms: 1 – x, 1 – y, 1 – z.

E-mail: mkarakus@pamukkale.edu.tr

Contract/grant sponsor: State Planning Organization, DPT; Contract/grant number: 97-K-120550.

 $0.15 \times 0.15 \times 0.30 \text{ mm}^3$. $C_{48}H_{64}O_8P_4S_8Zn_2$, M=1280.20, triclinic, $P\overline{1}$, a=11.330(2), b=12.385(2), c=12.511(2) Å, $\beta=73.984(3)^\circ$, V=1.5148(5) nm³, Z=1, R=0.064 (6057 data with $I>2\sigma(I)$), R=0.099 (all 8585 data, $\theta_{\text{max}}=26.4^\circ$). Programs used: SHELX97, ORTEP. CCDC deposition number: 215 075. The cyclopenteyl group (C8–C12)

²Department of Chemistry, Faculty of Science, Ankara University, 06100 Tandogan-Ankara, Turkey

³Chemistry Department, Bogazici University, 34000 Bebek-Istanbul, Turkey

⁴Department of Chemistry, Faculty of Chemistry and Minerolgy, Leipzig University, 04103 Leipzig, Germany

O1 C19 C18 O4 C20
C7 C6 C14 P2
C1 S1 Zn1 S3 S4 S2' O2'
C2 P1 S3' Zn1' S1'
C8 P2'
C9 O4' O3' O1'

^{*}Correspondence to: Mehmet Karakus, Department of Chemistry, Faculty of Arts and Sciences, Pamukkale University, 20017 Kinikli/Denizli, Turkey.

is disordered over two sites with approximately equal site occupancy factors.

Acknowledgements

We would like to thank Professor Dr Evamarie Hey-Hawkins (Leipzig University) for providing access to laboratory facilities. This work was supported by State Planning Organization, DPT (grant no. 97-K-120550).

REFERENCES

- 1. Tiekink ERT. Cryst. Eng. Commun. 2003; 5: 101.
- 2. Van Zyl WE, Fackler Jr JP. Phosphorous Sulfur 2000; 167: 117.