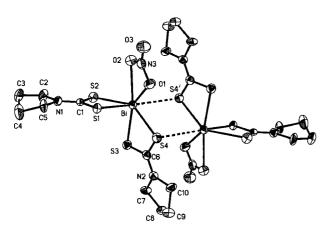
Crystallographic report

Bis[(nitro)bis(dithiotetrahydropyrrolocarbamato) bismuth(III)]

Han Dong Yin* and Chuan Hua Wang

Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China


Received 14 September 2004; Revised 27 September 2004; Accepted 28 September 2004

The loosely associated centrosymmetric structure of $[Bi(S_2CNC_4H_8)_2(NO_3)]_2$ features chelating dithiocarbamate and nitrate ligands, as well as weak intermolecular Bi-S interactions, so that a distorted pentagonal bipyramidal S_5O_2 coordination geometry results. Copyright © 2005 John Wiley & Sons, Ltd.

KEYWORDS: crystal structure; bismuth; dithiocarbamate; nitrate

COMMENT

The structural chemistry of bismuth 1,1-dithiolates is both rich and diverse, so that monomeric,¹ dimeric,² and linear polymeric species are known.³ In the title structure (Fig. 1), a

Figure 1. The molecular structure of $[Bi(S_2CNC_4H_8)_2(NO_3)]_2$; hydrogen atoms are omitted for clarity. Key geometric parameters: Bi-S1 2.5727(15), Bi-S2 2.7786(17), Bi-S3 2.6656(16), Bi-S4 2.7727(17), Bi-O1 2.630(5), Bi-O2 2.738(4), $Bi-S4^i$ 3.4320(18) Å. Symmetry operation i: 1-x, -y, 1-z.

Contract/grant sponsor: National Natural Foundation; Contract/grant number: 20271025.

Contract/grant sponsor: Natural Foundation of Shandong Province; Contract/grant number: L2003B01.

mixed-ligand loosely associated dimeric structure containing both dithiocarbamate and nitrate ligands is found. The bismuth atom is in a seven-coordinated, distorted S_5O_2 pentagonal bipyramidal geometry owing to one of the dithiocarbamate ligands chelating one bismuth center and, via the S4 atom, simultaneously bridging a centrosymmetrically related bismuth atom.

EXPERIMENTAL

[Bi(NO₃)(S₂CNC₄H₈)₂]₂ was obtained from the 1:2 reaction between Bi(NO₃)₃·5H₂O and the sodium salt of the ligand as per the literature method.² Crystals were isolated from the slow evaporation of a CH₃CN solution of the compound; m.p. 335 °C (dec.). IR (KBr) ν : 1631, 1500, 1443, 1385, 1148, 1021, 993, 693, 553, 450 cm⁻¹. Data were collected at 299 K on a Bruker Smart 1000 CCD for a block $0.10 \times 0.10 \times 0.20$ mm³. C_{20} H₃₂Bi₂N₆O₆S₈, M = 1126.96, monoclinic, P_{21}/n , a = 6.4718(13), b = 26.738(6), c = 10.423(2) Å, β = 106.384(3)°, V = 1730.3(6) Å³, Z = 2, R = 0.029 (2040 data with $I \ge 2\sigma(I)$; θ_{max} 25.0°), wR = 0.045 (all 3047 data). Programs used: SHELXL and ORTEP. CCDC deposition number: 179 925.

Acknowledgements

The National Natural Foundation of the People's Republic of China (20271025) and the National Natural Foundation of Shandong Province are thanked for support.

REFERENCES

- 1. Yin HD, Wang CH. Appl. Organometal. Chem. 2004; 18: 195.
- 2. Yin HD, Wang CH, Xing QJ. Chin. J. Inorg. Chem. 2003; 19: 955.
- Koh YW, Lai CS, Du AY, Tiekink ERT, Loh KP. Chem. Mater. 2003; 15: 4544.

^{*}Correspondence to: Han Dong Yin, Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China. E-mail: handongyin@lctu.edu.cn