# A 119Sn Mössbauer spectroscopic study on complexes of di- and tri-organotin(IV) moieties with 2-mercaptoethanesulfonates, in the solid state and in aqueous solution

Renato Barbieri,\* Arturo Silvestri\* and Friedo Hubert

\*Dipartimento di Chimica Inorganica, Università di Palermo, 26 Via Archirafi, I-90123 Palermo, Italy and †Lehrstuhl für Anorganische Chemie II, Universität Dortmund, D-4600 Dortmund 50, West Germany

Received 17 May 1988 Accepted 16 June 1988

The configuration of the bonding environment of tin in the complexes  $[R_2Sn(SCH_2CH_2SO_3)_2]^{2-}$  (R = Me,Ph) and [Me<sub>3</sub>Sn(SCH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>)] has been determined to be tetrahedral both in the solid state and in aqueous solution (for the methyl derivatives). The coordination number of tin increases to five in aqueous solutions for the Me,Sn(IV) complexes in Hepes buffer (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid; at least in fivefold excess, at pH 7.4) due to coordination by the tertiary amino nitrogen atom. No effect is detected due to the surfactant 2-hydroxypropylcellulose concerning both coordination to tin and influence on the Mössbauer parameters. The stoichiometry of mixed complex formation in aqueous solution of Me<sub>2</sub>Sn(IV), 2-mercaptoethanesulfonate and Hepes is 1:2:1, according to a procedure of 'Mössbauer titration'. All complexes in aqueous solution undergo slow lysis of the tin-sulfur bonds. Structural assignments have been generally effected on the basis of the magnitude of experimental values of Mössbauer nuclear quadrupole splittings, measured at 77 K for both solid and frozen aqueous absorbers, and comparison with data calculated by the point-charge model approach.

Keywords: Organotin, 2-mercaptoethanesulfonates, solid state, solution, Mössbauer spectra

# INTRODUCTION

In the course of our studies on the antitumor activity of organotin(IV) derivatives, 1-3 we recently

investigated compounds with tin-sulfur (Sn-S) bonds, and determined that the 2-mercaptoethanesulfonate complex [Ph<sub>2</sub>Sn(SCH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub>]<sup>2-</sup> exhibited the largest antileukemia P-388 activity in mice. Structural characteristics of these compounds are the availability of additional coordination sites at the tin atom, as well as the occurrence of strong tin-ligand atom bonds which in turn are possibly subjected to hydrolytic decomposition. The activity of the complex mentioned above was attributed to the Ph<sub>2</sub>Sn(IV) moiety, while the role of the coordinated ligand was assumed to be concerned with the process of transportation of the drug across the cell membranes, in agreement with the results of previous investigations. In this context, the work reported in the present paper has been carried out with the aim of contributing to an understanding of the structure—activity correlation.

The configuration of diorganotin(IV) bis(2-mercaptoethanesulfonates),  $[R_2Sn(SCH_2CH_2SO_3)_2]^{2-}$  (R = Me, Ph) as sodium and guanidinium salts, in the solid state, as well as in aqueous solutions of the Me<sub>2</sub>Sn(IV) derivatives, has been studied. The Me<sub>3</sub>Sn(IV) complex has been investigated for comparison. The availability of the fifth coordination site at the tin center in [Me<sub>2</sub>Sn(SCH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub>]<sup>2-</sup> has been studied in aqueous solution. Preliminary information upon the modes of possible lysis of the tin-sulfur bonds has been inferred from the changes occurring in aqueous solutions stored at room temperature. Mössbauer spectroscopy has been employed throughout the present investigation, in order to correlate the results with those concerning diorganotinhemoglobin systems, where this technique yields excellent structural answers.4

## EXPERIMENTAL

The organotin compounds were a gift from Schering A G, Bergkamen, FRG, and sodium 2-mercapto-ethanesulfonate, Na(HSCH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>), from Degussa

Pharma Gruppe, Frankfurt, FRG. Hydroxy-propylcellulose and Hepes were from Ega-Chemie, Steinheim, FRG and Hoechst Italia, Milan, Italy, respectively. Other reagents and solvents were products of C. Erba, Milan, Italy.

Table 1 119Sn Mössbauer parameters at 77.3 K of di- and tri-organotin(IV) 2-mercaptoethanesulfonates in the solid state and in aqueous frozen solutions

| No. | Compound                                                                                                                          | δ <sup>b</sup><br>(mm s <sup>-1</sup> ) | $\Delta E^{c}$ (mm s <sup>-1</sup> ) | $\Gamma_1^{d}$ (mm s <sup>-1</sup> ) | $\Gamma_2^d$ (mm s <sup>-1</sup> ) |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|
| (A) | Solid state <sup>a</sup>                                                                                                          |                                         |                                      |                                      |                                    |
| 1   | $Na_2[Me_2Sn(SCH_2CH_2SO_3)_2].2H_2O$                                                                                             | 1.36                                    | 1.68                                 | 0.96                                 | 0.97                               |
| 2   | $[C(NH_2)_3]_2^e[Me_2Sn(SCH_2CH_2SO_3)_2]$                                                                                        | 1.38                                    | 1.66                                 | 0.85                                 | 0.83                               |
| 3   | $Na_2[Ph_2Sn(SCH_2CH_2SO_3)_2].2H_2O$                                                                                             | 1.35                                    | 1.44                                 | 0.86                                 | 0.84                               |
| 4   | $[C(NH_2)_3]_2^e[Ph_2Sn(SCH_2CH_2SO_3)_2]$                                                                                        | 1.38                                    | 1.67                                 | 0.88                                 | 0.88                               |
| 5   | Na[Me <sub>3</sub> Sn(SCH <sub>2</sub> CH <sub>2</sub> SO <sub>3</sub> )].H <sub>2</sub> O                                        | 1.29                                    | 1.40                                 | 0.93                                 | 0.93                               |
| (B) | Aqueous solutions, frozen <sup>f</sup>                                                                                            |                                         |                                      |                                      |                                    |
| 6   | [C(NH2)3]2e[Me2Sn(SCH2CH2SO3)2]g                                                                                                  | 1.37                                    | 1.67                                 | 0.79                                 | 0.78                               |
| 7   | $Na_2[Me_2Sn(SCH_2CH_2SO_3)_2]^g$                                                                                                 | 1.39                                    | 1.84                                 | 0.83                                 | 0.71                               |
| 7′  | Stored 72 days at R.T.                                                                                                            | 1.15                                    | 2.14                                 | 0.64                                 | 1.42                               |
| 7 ″ | Stored 6 months at R.T.                                                                                                           | 1.07                                    | 2.79                                 | 0.69                                 | 0.59                               |
| 8   | $Na[Me_3Sn(SCH_2CH_2SO_3)]^h$                                                                                                     | 1.30                                    | 1.42                                 | 0.77                                 | 0.78                               |
| 8′  | Stored 18 days at R.T.                                                                                                            | 1.23                                    | 2.66                                 | 0.79                                 | 0.88                               |
| (C) | Aqueous solutions in presence of Hepes, frozenf,i                                                                                 |                                         |                                      |                                      |                                    |
| 9   | $Na_2[Me_2Sn(SCH_2CH_2SO_3)_2]$ : Hepes, 1:1                                                                                      | 1.36                                    | 1.97                                 | 0.82                                 | 0.74                               |
| 10  | $Na_2[Me_2Sn(SCH_2CH_2SO_3)_2]$ : Hepes, 1:5                                                                                      | 1.40                                    | 2.16                                 | 0.64                                 | 0.89                               |
| 11  | $Na_2[Me_2Sn(SCH_2CH_2SO_3)_2]$ : Hepes, 1:20<br>(Hepes 0.2 mol dm <sup>-3</sup> ) <sup>j</sup>                                   | 1.39                                    | 2.19                                 | 0.81                                 | 0.82                               |
| 11′ | Stored 7 months at R.T.                                                                                                           | 1.07                                    | 3.05                                 | 0.93                                 | 0.95                               |
| 12  | $[C(NH_2)_3]_2[Me_2Sn(SCH_2CH_2SO_3)_2]$<br>in Hepes (0.2 mol dm <sup>-3</sup> )                                                  | 1.43                                    | 2.16                                 | 0.65                                 | 0.93                               |
| 12′ | Stored 2-5 months at 4-20 °C                                                                                                      | 1.16                                    | 3.02                                 | 1.01                                 | 0.98                               |
| 13  | Me <sub>2</sub> SnCl <sub>2</sub> : HSCH <sub>2</sub> CH <sub>2</sub> SO <sub>3</sub> Na<br>in Hepes (0.2 mol dm <sup>-3</sup> )  | 1.27                                    | 2.63                                 | 0.92                                 | 1.12                               |
| 14  | Me <sub>2</sub> SnCl <sub>2</sub> : 3HSCH <sub>2</sub> CH <sub>2</sub> SO <sub>3</sub> Na<br>in Hepes (0.2 mol dm <sup>-3</sup> ) | 1.36                                    | 2.16                                 | 0.91                                 | 0.83                               |
| 15  | Me <sub>2</sub> SnCl <sub>2</sub> : 4HSCH <sub>2</sub> CH <sub>2</sub> SO <sub>3</sub> Na<br>in Hepes (0.2 mol dm <sup>-3</sup> ) | 1.36                                    | 2.22                                 | 0.87                                 | 0.94                               |

<sup>&</sup>lt;sup>a</sup> Absorber thickness was 0.46–0.52 mg <sup>119</sup>Sn cm<sup>-1</sup>. <sup>b</sup> Isomer shift with respect to Ca<sup>119</sup>SnO<sub>3</sub> at room temperature. <sup>c</sup> Nuclear quadrupole splitting (± 0.02 mm s<sup>-1</sup>)<sup>4</sup>. <sup>d</sup> Full width at half height of the resonant peaks. <sup>c</sup> Guanidinium, C(NH<sub>2</sub>)<sub>3</sub><sup>+</sup>. <sup>f</sup> Data for undashed system numbers refer to samples of solutions in redistilled water immediately frozen after preparation by immersion in liquid nitrogen; data with dashed code numbers concern solutions which were stored at room temperature for the given time, under normal laboratory conditions, before freezing and submitting a suitable sample for Mössbauer spectroscopy. <sup>g</sup> Concentrations were 10–30 mmol dm <sup>3</sup>, pH 6.6–7.4; some samples contained 0.3% (w/v) of 2-hydroxypropylcellulose. <sup>h</sup> Concentrations were 10–35 mmol dm<sup>-3</sup>, pH 7.4; some samples contained 0.3% (w/v) of 2-hydroxypropylcellulose. <sup>i</sup> Hepes = *N*-2-hydroxyethylpiperazine-*N*′-2-ethanesulfonic acid. In systems 9–15 the concentration of the organometal moiety was constantly 10 mmol dm<sup>-3</sup>, pH 7.40–7.47. For 9–11, solutions of Mc<sub>2</sub>SnCl<sub>2</sub> (10 mmol dm<sup>-3</sup>) + HSCH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>Na (20 mmol dm<sup>-3</sup>) + Hepes were also used in the correct proportion, eventually adjusting the pH to 7.40. <sup>j</sup> Some samples were added with 0.3% (w/v) of 2-hydroxypropylcellulose.

The synthesis of the solid complexes listed in Table 1 was effected by literature procedures. 1.5

The Mössbauer spectra were measured at 77.3 K with the usual apparatus and data reduction techniques.<sup>4</sup> The sources (e.g. Ca<sup>119</sup>SnO<sub>3</sub>, 1–10 mCi, Radiochemical Centre, Amersham, UK) were moving at room temperature with linear velocity, constant acceleration, in a triangular waveform. The absorber samples from aqueous solutions consisted of about

S(R')

S(R)

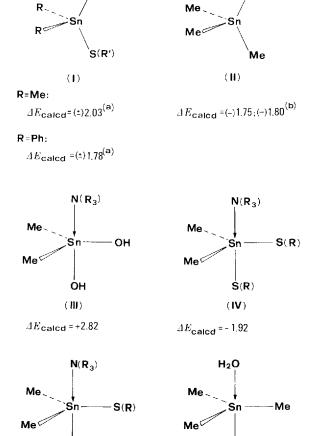



Figure 1 Possible regular structures (idealized) for the complexes discussed in the text, and related point-charge model estimates of Mössbauer nuclear quadrupple splittings  $\Delta E$  (see text).

S(R)

(VI)

 $\Delta E_{\mathbf{calcd}} = -2.56$ 

OH

(**V**)

 $\Delta E_{
m calcd}$  =-2.78

(a) Sign undetermined, the asymmetry parameter  $\eta = (\gamma_{xx} - \gamma_{yy})/(V_{zz})$  being unity. (b) Experimental value, used as estimator of the partial nuclear quadrupole splitting ([S thiol]—[hal]), tetrahedral. (9)

2 cm<sup>3</sup> of solution in a polythene holder, quickly prefrozen by immersion in liquid nitrogen before insertion into the cryostat.<sup>4</sup> The related Mössbauer parameters were reproducible and considered to reflect reasonably the structural characteristics of the organotin compounds in the solutions at room temperature.<sup>4</sup> The results obtained are reported in Table 1.

The point-charge model calculations of Mössbauer nuclear quadrupole splitting, reported in Fig. 1 and related to possible structural arrangements of our organotin compounds in the solid state and in solution, have been effected by the principles and procedures described in a previous paper<sup>4</sup> according to relevant literature, <sup>4,7</sup> and employed tabulated values of partial nuclear quadrupole splitting parameters <sup>4,6,8–10</sup> (the value for {NR<sub>3</sub>} in Fig. 1 being that of piperidine <sup>10</sup>). A computer program supplied by T.C. Gibb (Leeds, UK) was employed for the calculations.

### DISCUSSION

The magnitudes of the Mössbauer parameter isomer shift,  $\delta$ , listed in Table 1 for systems 1–15, are consistent with established values of Me<sub>2</sub>Sn(IV), Ph<sub>2</sub>Sn(IV) and Me<sub>3</sub>Sn(IV) derivatives. <sup>6,7,9</sup> In solution phases,  $\delta$ -values constantly decrease as a function of the time of storage at room temperature (systems 7′, 7″, 8′, 11′, 12′; Table 1), which suggests that the respective steady diminution of the *s*-electron density at the tin nuclei originates from the replacement of sulfur by more electronegative atoms or groups.

The narrowness of the linewidths,  $\Gamma$ , Table 1, is indicative of the general occurrence of single tin sites in each system; if desulfuration reactions take place (vide infra),  $\Gamma$ -values are consistent with the presence of at least two distinct metal sites (see for example system 7').

Turning to the possible determination of the configuration of the environment of tin in the species investigated here, the experimental parameters  $\Delta E$  of systems 1 to 8, Table 1, undoubtedly indicate the occurrence of tetrahedral configurations of types I and II (Fig. 1), in both solid state and aqueous solution, according to fingerprint criteria<sup>9,11</sup> as well as to the agreement of experimental and calculated  $\Delta E$  data (Table 1 and Fig. 1; differences lie within the maximum accepted range<sup>8</sup> of  $\pm$  0.4 mm s<sup>-1</sup>). Coordina-

tion to tin by sulfonate oxygen atoms is ruled out, since it would imply  $\Delta E_{\rm exp} = 4.17-5.54 \, \rm mm \, s^{-1}$  for diand tri-organotin(IV) derivatives in the solid state; 12.13 moreover sulfate oxygen does not bind to organotins in aqueous solution.<sup>4</sup> As far as systems in aqueous solution are concerned, it may be recalled that Me<sub>2</sub>Sn(OH)<sub>2</sub> has been assumed as a tetrahedral species, 14 in excellent agreement with Mössbauer spectroscopic data.4 The reluctance of tin in Me<sub>2</sub>Sn(OH)<sub>2</sub> solution to accept coordination by solvent H<sub>2</sub>O may be ascribed to the effect of the large electron density donated to the metal by hydroxyls, 15 and an analogous reason could be invoked for our compounds in aqueous solution, systems 6 and 7 of Table 1. Moreover,  $Alk_3SnOH$  (Alk = Me, Et) in aqueous solution at pH = 7.40 appears to be a severely distorted trigonal bipyramidal species with an axial water molecule quite loosely bound;16 the strictly tetrahedral tin environment in the aqueous solution of the Me<sub>3</sub>Sn(IV) complex No 8, Table 1, could then be rationalized in terms of the larger electron donation to tin by thiol sulfur with respect to hydroxyl oxygen.

The lack of oxygen coordination to tin in our Me<sub>2</sub>Sn(IV) and Me<sub>3</sub>Sn(IV) compounds is also shown by the Mössbauer parameters of the aqueous systems containing 2-hydroxypropylcellulose, systems 6, 7 and 8, Table 1 (and related footnotes), where no influence due to the surfactant is detected. The latter has been considered in the present context since it is employed in antitumor testing as a dispersive agent ('Klucel', with 0.9% NaCl, w/v) for the injection of drugs in suspension;<sup>1,2</sup> its eventual interaction with the compounds studied here has been taken into account in view of the facile reactivity of carbohydrates with organotins, such as that detected for ribose moieties in Me<sub>2</sub>Sn(IV)—nucleoside systems.<sup>17</sup>

The data for systems 6–8 reveal also a physical implication, in the sense that formation of gel, rather than crystalline solid (ice), takes place upon rapidly freezing (to liquid nitrogen temperature) the solutions containing the surfactant. This further demonstrates the reliability of Mössbauer data measured for crystalline absorbers, in the hypothesis for the formation of glassy zones in the neighborhood of the metal centres.<sup>18</sup>

The formation of complexes between [Me<sub>2</sub>Sn(SCH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub>]<sup>2-</sup> and Hepes buffer, through coordination to the tin center by the tertiary amino nitrogen of the buffer (which may mimic the bonding assumed to occur in organotin-protein systems, involving thiol sulfur and imidazole nitrogen<sup>19,20</sup>) is

evidenced by the  $\Delta E$  values for the aqueous systems with mole ratios 1:5 and 1:20, systems 10, 11 and 12 of Table 1. These results are perfectly equivalent to those concerning the complexation of  $Me_2Sn(OH)_2$  by Hepes, where the formation of the trigonal bipyramidal species III (Fig. 1) has been assumed.<sup>4</sup> The analogous complex IV (Fig. 1) is advanced here in line with the agreement between the related  $\Delta E_{\rm exp}$  and  $\Delta E_{\rm calcd}$  data. It is worth noting that these mixed complexes involve large stability constants for the bonding of thiol sulfur to tin, and consistently lesser tendencies for complexation by a nitrogen donor, which is in line with findings concerning analogous  $Me_3Sn(IV)$  complex systems.<sup>21</sup>

In the context of a previous study on the interaction of Me<sub>2</sub>Sn(IV) compounds with hemoglobin, we investigated the stoichiometry of the reaction of Me<sub>2</sub>Sn(IV) with cysteine in model aqueous systems organotin-Hepes complexes.<sup>4</sup> A containing 'Mössbauer titration' procedure  $\Delta E$  versus the molar ratio cysteine: Mc, Sn(IV) in Hepes established that not more than two molecules of cysteine bind to a Me<sub>2</sub>Sn(IV) moiety yielding the saturated complex Me<sub>2</sub>Sn(SR)<sub>2</sub>. (Hepes<sup>4</sup>, IV of Fig. 1 of the present paper). A perfectly analogous result has been obtained in the present work for the bonding of 2-mercaptoethanesulfonate to Me<sub>2</sub>Sn(IV) acceptors: in fact the  $\Delta E$  values of the solutions 11–15 of Table 1, which refer to systems with composition 2-mercaptoethanesulfonate:Me<sub>2</sub>Sn(IV) ranging from 1:1 to 4:1, reproduce exactly the 'titration' graph for cysteine referred to above, involving sequentially the species III, V and IV (Fig. 1). The formation of the saturated complex Me<sub>2</sub>Sn(SR)<sub>2</sub>. Hepes, **IV**, is clearly shown by the constancy of the  $\Delta E$  values for the solutions 11–12, 14 and 15 (Table 1). An analogous behavior has been found in the aqueous systems Alk<sub>3</sub>Sn(IV)-cysteine-Hepes (Alk = Me, Et) where 1:1:1 complexes are ultimately formed, as indicated by 'Mössbauer titrations'. 16 It is accordingly concluded that the reaction of thiol sulfur with organotin(IV) moieties in aqueous solution at pH 7.40 very probably proceeds generally through acid-base reactions between R-SH and  $R_n Sn(OH)_{4-n}$  (n = 2,3), there being no possibility of further sulfur—tin bonding. These assumptions seem to be essential for the correct interpretation of the interaction of organotins with proteins, 19,20 also being in accordance with the results of a recent potentiometric study on Me<sub>3</sub>Sn(IV)—thiol ligand complexes.<sup>21</sup>

The last part of the present paper concerns the study

of the possible lysis of tin-sulfur bonds in aqueous solution of these compounds at physiological pH, which has been undertaken to obtain evidence for the reliability of the hypothesis that the antileukemia P-388 activity of these compounds in mice can be attributed to diorganotin(IV) moieties which are produced by the dissociation of ligands and which are then released into cells.1 Lysis indeed may occur, based on data for long-term storage conditions of the compounds studied here in aqueous systems. In fact, the Mössbauer nuclear quadrupole splitting parameters of Me<sub>2</sub>Sn(IV) and Me<sub>3</sub>Sn(IV) complexes exhibit large increases (systems 7', 7", 8', 11', 12', Table 1) with respect to data for the tetrahedral configurations I and II (Fig. 1) (inherent in the initial conditions). Formation of disulfide groups by free ligand oxidation (for example of 2,2-dimercaptodiethanesulfonate<sup>22</sup>, in agreement with in vivo findings on the nature of coenzyme-M<sup>23</sup>) may take place, with consequent steady dissociation of the related Me<sub>2</sub>Sn(IV) complexes. Speculating on the nature of the products of the lysis process, the sulfur-free complex III, formed from IV via the partially hydrolyzed species V (Fig. 1), could be the species present in the samples 11', 12' (Table 1), considering the agreement between  $\Delta E_{\rm exp}$  and  $\Delta E_{\rm calcd}$ values. The role of the water solvent could consist of a gradual aquation process such as that sketched for VI (Fig. 1<sup>16</sup>), where  $\Delta E_{\text{calcd}}$  particularly agrees with  $\Delta E_{\rm exp}$  system B' (Table 1).

In conclusion, the present investigation suggests the following.

- (1) [R<sub>2</sub>Sn(SCH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub>]<sup>2-</sup> (R = Me, Ph) and [Me<sub>2</sub>Sn(SCH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>)]<sup>-</sup> exhibit tetrahedral tin sites C<sub>2</sub>SnS<sub>2</sub> and C<sub>3</sub>SnS in both the solid state and aqueous solutions (the latter concerning the methyl derivatives).
- (2) Further coordination to the tin center in C<sub>2</sub>SnS<sub>2</sub> groups may take place.
- (3) Lysis of tin-sulfur bonds may occur (very slowly) in aqueous solution.

Acknowledgements The financial support by Ministero della Pubblica Istruzione, Progetti di Interesse Nazionale (Roma), is gratefully acknowledged.

# REFERENCES

 Huber, F, Roge, G, Carl, L, Atassi, G, Spreafico, F, Filippeschi, S, Barbieri, R, Silvestri, A, Rivarola, E, Ruisi, G, Di

- Bianca, F and Alonzo, G J. Chem. Soc., Dalton Trans., 1985, 523 and references cited therein
- Ruisi, G., Silvestri, A., Lo Giudice, M.T., Barbieri, R., Huber, F., Grätz, K and Lamartina, L. J. Inorg. Biochem, 1985, 229
- Huber, F and Barbieri, R Are there relationships between structure and antilcukemia P-388 activity of trioganotin derivatives of aminoacids and some other biologically relevant compounds?
   Chapter 14, in: Tin as a Vital Nutrient, Cardarelli, N (ed). CRC Press, Boca Raton, FL, 1986, p 175
- Barbieri, R and Musmeci, M T J. Inorg. Biochem., 1988, 32:89 and references cited therein
- Wirth, H O, Friedrich, H H and Lorenz, H J German Offen. 2 238 360, 4 August 1972
- Bancroft, G M and Platt, R H Adv. Inorg. Chem. Radiochem., 1972, 15:59 and references cited therein
- Parish, R V Structure and bonding in tin compounds, Chapter 16 in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Long, G J (ed), Vol. 1, Plenum Press, New York, 1984, p 527 and references cited therein
- Clark, M G, Maddock, A G and Platt, R H J. Chem. Soc., Dalton Trans., 1972, 281
- Poller, R C and Ruddick, J N R J. Organomet. Chem., 1973, 60:87
- Bancroft, G M, Kumar Das, V G, Sham, T K and Clark, M G J. Chem. Soc., Dalton Trans., 1976, 643
- Barbieri, R Giornale di Fisica, 1982, 23:289 and references cited therein
- Yeats, P A, Sams, J R and Aubke, F Inorg. Chem., 1971, 10:1877; idem, ibid., 1972, 11:2634
- Harrison, P.G., Phillips, R.C. and Richards, J.A.J. Organomet. Chem., 1976, 114:47
- Tobias, R S, Ogrins, I and Nevett, B A *Inorg. Chem.*, 1962,
   1:638 (1962); Robias, R S and Yasuda, M *Canad. J. Chem.*,
   1964, 42:781
- Farrer, H N, McGrady, M M and Tobias, R S J. Am. Chem. Soc., 1965, 87:5019
- Barbieri, R, Silvestri, A, Lo Giudice, M T, Ruisi, G and Musmeci, M T J. Chem. Soc., Dalton Trans., 1988 (in press)
- Pellerito, L, Ruisi, G, Barbieri, R and Lo Giudice, M T Inorg. Chim. Acta, 1977, 21:L33
- Vèrtès, A, Korecz, L and Burger, K Mössbauer Spectroscopy, Elsevier, Amsterdam, 1979, Chapter 3, pp 234–235 and references cited therein
- Elliott, B M, Aldridge, W N and Bridges, J W Biochem. J., 1979, 461 and references cited therein
- Chu, A L, Taketa, F, Mauk, A G and Brayer, G D J. Biomol. Struct. Dyn., 1985, 3:579
- Hynes, M J and O'Dowd, M J. Chem. Soc., Dalton Trans., 1987, 563
- Brock, N and Pohl, J Regional detoxification, a principle for increasing the selectivity of cancer chemotherapy, Chapter 24 in: Clinical Chemotherapy, Vol. III, Antineoplastic Chemotherapy, Kuemmerle, H P, Baerkarda, B, Karrer, K and Mathe, G (eds), Thieme—Stratton, New York, 1984, p 389
- Taylor, C D and Wolfe, R S J. Biol. Chem., 1974, 249:4879 idem, ibid., 1974, 249:4886