Received: 13 February 2008

Revised: 23 March 2008

Accepted: 23 March 2008

Published online in Wiley Interscience:

(www.interscience.com) DOI 10.1002/aoc.1414

Palladium-catalyzed Heck coupling of 2-vinylpyridine with aryl chlorides

Ming Li and Ruimao Hua*

An efficient $PdCl_2(PCy_3)_2$ -catalyzed cross-coupling reaction of 2-vinylpyridine with aryl chlorides to afford *trans*-2-styrylpyridines with a variety of functional groups on the benzene ring is described. Copyright © 2008 John Wiley & Sons, Ltd.

Keywords: aryl chloride; Heck reaction; palladium; 2-vinylpyridine; styrylpyridine

Introduction

The palladium-catalyzed cross-coupling reaction of aryl halides with alkenes, known as the Heck reaction, is a powerful C-C bond forming process. [1-4] trans-Styrylpyridines can be synthesized by the Heck reaction of styrenes with halopyridines (Scheme 1). Although efficient catalytic systems for the Heck reactions of para- and meta-halopyridines such as 3-iodopyridines and 3-,4bromopyridines with styrene to afford trans-3- or 4-styrylpyridines in good to high yields have been developed, [5-11] reports on the cross-coupling reactions of ortho-halopyridines with styrene are few due to the low reactivity of ortho-halopyridines under the Heck reaction conditions.[12-14] Only two references have been found in which trans-2-styrylpyridine could be obtained by the palladium-catalyzed reaction of styrene (Scheme 1, R = H) with 2-iodopyridine $[Pd(OAc)_2 + 2PPh_3$, in Et_3N at 100 °C for 24 h, 11%],[11] and 2-chloropyridine (oxime-derived palladacycle, in DMF at 160 °C for 30 h, 70%).[12] 2-Bromopyridine showed no reactivity^[7,8] or a very low reactivity^[5,14] for the similar coupling reaction in the tested catalytic systems. In addition, all the coupling reactions mentioned above were limited to styrene: there have been no reports on the reaction of halopyridines with substituted styrenes so far.

Recently, *trans*-2-styrylpyridine was used as a ligand in metal complexes, [15–17] photoreactive group in polymers, [18–20] and valuable material for the synthesis of physiological and biological active compounds. [21,22] The structural unit of 2-styrylpyridine also exists in biological active compounds. [23,24] Therefore development of an efficient method for the synthesis of *trans*-2-styrylpyridines is interesting and valuable.

Our previous work disclosed that $PdCl_2(PCy_3)_2$ is an efficient catalyst for Sonogashira^[25] and $Heck^{[26]}$ cross-coupling reactions of aryl chlorides. In continuation of our interest in applications of $PdCl_2(PCy_3)_2$ as a catalyst in C–C bond formation reaction, in this paper, we report $PdCl_2(PCy_3)_2$ -catalyzed cross-coupling reactions of 2-vinylpyridine with aryl chlorides as an alternative efficient

Scheme 1. Heck reaction of styrenes with halopyridines.

Scheme 2. Heck reaction of 2-vinylpyridine with aryl chlorides.

catalytic system for the synthesis of *trans*-2-styrylpyridines with a variety of functional groups on the benzene ring (Scheme 2).^[27]

Results and Discussion

The results on examining the catalytic activity of palladium complexes in the reaction of 2-vinylpyridine with chlorobenzene (1a) using Cs₂CO₃ as base are described in Table 1. It was found that zero-valent palladium complexes such as Pd(PPh₃)₄ and Pd(dppe)₂ could not catalyze the cross-coupling reaction in toluene at 130 °C (sealed tube, oil bath temperature): in both cases, only trace amounts of 2-styrylpyridine (2a) were detected by GC and GC-MS analyses of the reaction mixture: the starting materials were recovered in almost quantitative yields (Table 1, entries 1 and 2). Palladium(II) complexes such as PdCl₂(PEt₃)₂ and PdCl₂(PPh₃)₂ showed low catalytic activities under the same reaction conditions to give 2a in fair yields (Table 1, entries 3 and 4). In the presence of PdCl₂(CH₃CN)₂/dppp (1:2), **2a** was formed in 38% GC yield (Table 1, entry 5). At a lower reaction temperature (120 °C), PdCl₂(PCy₂)₂ catalyzed the coupling reaction to afford 2a in 38% GC yield (Table 1, entry 6); at 130 °C, it showed a higher catalytic activity to furnish 2a in 64% GC yield (Table 1, entry 7). The addition of an additional PCy₃ molecule resulted in a significant decrease of the catalytic activity (Table 1, entry 8). Increasing the reaction temperature to 140 °C could significantly enhance the reaction, in this case 2a was formed in 95% GC yield

Department of Chemistry, Tsinghua University, Innovative Catalysis Program, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Beijing 100084, People's Republic of China

^{*} Correspondence to: Ruimao Hua, Department of Chemistry, Tsinghua University, Innovative Catalysis Program, Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Beijing 100084, People's Republic of China. E-mail: ruimao@mail.tsinghua.edu.cn

Applied

Table 1. Palladium-catalyzed cross-coupling of 2-vinylpyridine with chlorobenzene under different conditions^a

Entry	Catalyst	Solvent	Temperature (°C)	Yield (%) ^b
1	Pd(PPh ₃) ₄	Toluene	130	<5
2 ^c	Pd(dppe) ₂	Toluene	130	<5
3	$PdCl_2(PEt_3)_2$	Toluene	130	26
4	$PdCl_2(PPh_3)_2$	Toluene	130	27
5 ^d	$PdCl_2(CH_3CN)_2 + dppp (1:2)$	Toluene	130	38
6	PdCl ₂ (PCy ₃) ₂	Toluene	120	38
7	PdCl ₂ (PCy ₃) ₂	Toluene	130	64
8	$PdCl_{2}(PCy_{3})_{2} + PCy_{3} (1:1)$	Toluene	130	9
9	PdCl ₂ (PCy ₃) ₂	Toluene	140	95 (87)
10	$PdCl_2(PCy_3)_2$	o-Xylene	140	92
11	$PdCl_2(PCy_3)_2$	DMSO	140	<5
12	$PdCl_2(PCy_3)_2$	Dioxane	140	18

^a Reactions were carried out with 2-vinylpyridine (0.5 mmol), chlorobenzene (0.6 mmol), Cs₂CO₃ (0.7 mmol) and catalyst (0.015 mmol) in solvent (1.0 ml).

(Table 1, entry 9), and a similar result could be obtained in o-xylene (Table 1, entry 10). In addition, it was disclosed that the effects of solvents were obvious for the present cross-coupling reaction. Whereas our previous reports showed that DMSO and dioxane were good solvents for $PdCl_2(PCy_3)_2$ -catalyzed Sonogashira^[25] or $Heck^{[26]}$ reactions of aryl chlorides with terminal alkynes or styrenes, respectively, $PdCl_2(PCy_3)_2$ showed a very low catalytic activity when the present cross-coupling reaction was carried out in either DMSO or dioxane (Table 1, entries 11 and 12).

Moreover, it should be noted that the catalytic activity of $PdCl_2(PCy_3)_2$ also depends on the nature of the used bases in the present cross-coupling reaction. The use of K_2CO_3 , Bu_3N and pyridine to replace Cs_2CO_3 as bases led to almost no reaction product or low conversions.

Table 2 summarizes the results of the cross-coupling of 2vinylpyridine with a variety of aryl chlorides in the presence of PdCl₂(PCy₃)₂. As can be seen from Table 2, the cross-coupling reactions of 2-vinylpyridine with both neutral and electron-rich (deactivated) aryl chlorides proceeded smoothly at 140°C to afford the corresponding coupling products in high isolated yields after 10-25 h (Table 2, entries 1-4). Surprisingly, the electron-deficient aryl chlorides, which are commonly considered to be the activated ones in Heck cross-coupling reaction with alkenes, showed a lower reactivity than electron-rich aryl chlorides. For example, the reactions of 2-vinylpyridine with 1,2dichlorobenzene (1e) and 1,4-dichlorobenzene (1f) at 140 °C for 25 h afforded the expected cross-coupling products 2e and 2f in 56 and 30% yields, respectively (Table 2, entries 5 and 6). Prolonging the reaction time up to 25 h could not increase the yield considerably. Under these conditions, the reactions of 2-vinylpyridine with 2-chlorothiophene (1g), methyl 3-chlorobenzoate (1h), 4-chlorobenzophenone (1i) and 4-chlorobenzaldehyde (1j) furnished only small amounts of the desired coupled products; repeating these reactions in the presence of Bu_4NBr as additive, which is considered to be a stabilizer of palladium catalysts in palladium-catalyzed Heck cross-coupling reactions, [28–30] resulted in the formation of products in fair yields (Table 2, entries 7–11).

Since electron-deficient aryl chlorides showed a low reactivity for the cross-coupling reaction with 2-vinylpyridine, we then investigated the reaction using electron-deficient aryl bromides; however the coupled products were also obtained in moderate yields only. For example, methyl 2-bromobenzoate (**1k**) reacted with 2-vinylpyridine to afford the corresponding product **2k** in 46% yield (Scheme 3). When PdCl₂(PPh₃)₂ was employed as catalyst, the yield of **2k** was decreased to 15%.

Recently, polypyridyl ligand-coordinated transition metal complexes have been found to have potential applications for synthesizing the functional materials with interesting electrochemical, photochemical and photophysical properties. [31,32]

trans-1,2-Di(2-pyridyl)ethene (**2I**) is one of the basic starting materials for preparation of such type of ligands. ^[33] Therefore, we also examined the cross-coupling reaction of 2-vinylpyridine with 2-bromopyridine (**1I**); unfortunately, **2I** was obtained in only 20% and 16% yields in the presence of $PdCl_2(PCy_3)_2$ and $PdCl_2(PPh_3)_2$, respectively (Scheme 4).

The present cross-coupling reaction of 2-vinylpyridine with aryl chlorides is considered to take place following an essentially similar mechanism to that of the Heck reaction of alkenes with aryl halides, which has been well documented. [34–37] In the present catalyst system, the most likely reducing agent for the reduction of Pd(II) to the crucial catalytically active Pd(0) would be $\mathrm{CO_3}^{2-.[38]}$

Conclusions

In this paper, trans-2-styrylpyridines could be obtained by the cross-coupling reaction of 2-vinylpyridine with aryl chlorides in

b Determined by GC based on 2-vinylpyridine used. Number in parenthesis is isolated yield.

^c DPPE = 1, 2-bis(diphenylphosphino)ethane.

 $^{^{\}rm d}$ DPPP = 1, 3-bis(diphenylphosphino)propane.

Table 2. Po	dCl ₂ (PCy ₃) ₂ -catalyzed cross-co	oupling of 2-vir	nylpyridine with aryl	chlorides ^a		
Entry	Aryl-Cl		Time (h)	Product		Yield (%)b
1	CI	1b	10		2b	70
2	v	1b	25	~	2b	92
3	CI	1c	25		2 c	92
4	Me—CI	1d	10	Me	2d	78
5	CI	1e	25	N CI	2e	56
6	CI—CI	1f	25	CI	2f	30
7	SCI	1g	10	S S	2 g	<5
8 ^c		1g	10		2g	37
gc	COOMe	1h	10	COOMe	2h	34
10 ^c	O Ph CI	1i	10	COPh	2i	40
11 ^c	онс	1j	10	CHO	2j	13

^a Reactions were carried out with 2-vinylpyridine (1.0 mmol), aryl chloride (1.2 mmol), Cs₂CO₃ (1.3 mmol) and PdCl₂(PCy₃)₂ (0.03 mmol) in toluene (2.0 ml) at 140 °C. b Isolated yield based on 2-vinylpyridine used.

the presence of catalytic amounts of PdCl₂(PCy₃)₂ in toluene with the use of Cs₂CO₃ as base. The high catalytic activity in the reactions of neutral and electron-rich aryl chlorides is one of the important features of this catalytic system. This catalytic procedure provides a direct and convenient route to trans-2-styrylpyridines with various functional groups on the benzene ring.

Experimental Section

General methods

All organic starting materials were analytically pure and used without further purification. ¹H and ¹³C NMR spectra were recorded on Jeol JNM-ECA300 spectrometers at 300 and 75 MHz,

 $^{^{}c}$ Bu₄NBr (10–80%) was added as additive.

Scheme 3. Heck reaction of 2-vinylpyridine with methyl 2-bromobenzoate.

Scheme 4. Heck reaction of 2-vinylpyridine with 2-bromopyridine.

respectively. ^1H chemical shifts (δ) were referenced to TMS and ^{13}C NMR chemical shifts (δ) were referenced to the internal solvent resonance. GC analyses of organic compounds were performed on an Agilent Technologies 1790 GC (with a TC-WAX capillary 25m column) instrument. Mass spectra were obtained on a Hewlett Packard 5890 Series II GC/MS spectrometer with a PEG-25M column. Elemental analyses were obtained with a Flash EA 1112 Element Analyzer in the Institute of Chemistry, Chinese Academy of Sciences.

Typical experimental procedure for the cross-coupling of 2-vinylpyridine with chlorobenzene (1a), affording (E)-2-styrylpyridine (2a)

A mixture of 2-vinylpyridine (52.5 mg, 0.5 mmol), $\bf 1a$ (67.5 mg, 0.60 mmol), Cs_2CO_3 (228.0 mg, 0.7 mmol) and $PdCl_2(PCy_3)_2$ (11.0 mg, 0.015 mmol) in toluene (1.0 ml) under nitrogen in a screw-capped thick-walled Pyrex tube was heated with stirring at 140 °C (oil bath temperature) for 15 h. After cooling, the reaction mixture was diluted with CH_2Cl_2 to 4.0 ml and octadecane (76.2 mg, 0.3 mmol) was added as internal standard for GC analysis. After GC and GC-MS analyses, removing the solvents and volatiles under vacuum, the residue was subjected to preparative TLC isolation (silica gel, eluted with a mixture solvent of ethyl acetate and petroleum ether; 60-90 °C, 1:4) to give $\bf 2a$ as a pale yellow solid (80.0 mg, 0.44 mmol, 87%). The results of GC analysis of the reaction mixture revealed that $\bf 2a$ was formed in 95% GC yield (Table 1, entry 9).

All cross-coupling products were isolated and gave satisfactory spectral and analytical data. **2a**,^[12] **2b**,^[39] **2c**,^[40] **2d**,^[41] **2e**,^[42] **2f**,^[41] **2g**,^[43] **2j**,^[18] and **2l**,^[44] are known compounds which were characterized by ¹H, ¹³C-NMR and mass spectra; **2h**, **2i** and **2k** are new compounds, their spectroscopic data are given below.

(E)-2-(3-Methoxycarbonylstyryl)pyridine 2h

Yellow solid, m.p. $97-98\,^{\circ}\text{C}$ (recrystallization with $\text{CH}_2\text{Cl}_2-\text{cyclohexane}$). ^1H NMR (300 MHz, CDCl_3) δ 8.61 (d,

1H, J=3.1 Hz, CHN); 8.28 (s, 1H, 1H of benzene ring); 7.95 (d, 1H, J=7.9 Hz, 1H of benzene ring); 7.74–7.16 (m, 7H, CH=CH, 3H of pyridinyl and 2H of benzene ring); 3.94 (s, 3H, OCH_3). $^{13}C \text{ NMR } (75 \text{ MHz, } CDCl_3) \delta 166.9 (CO); 155.2 [C_5H_4N, (i)]; 149.7 (C_5H_4N, adjacent to N); 137.0 [C_6H_4, (i), linked CH=CH]; 136.6, 131.6, 131.5, 130.7, 129.2, 129.1, 128.8, 127.9, 122.4(2C) (CH=CH, 5C of benzene ring and 3C of pyridinyl); 52.2 (OCH_3). GCMS <math>m/z$ (% relative intensity): 239 (M·+, 33), 238(100), 224(11), 206(11), 178(15), 152(9), 127(2), 104(2), 89(4). Anal. calcd for $C_{15}H_{13}NO_2$: C, 75.31; H, 5.44; N, 5.86. Found: C, 75.01; H, 5.58; N, 5.71.

(E)-2-(4-Benzoylphenylstyryl)pyridine 2i

Yellow solid, m.p. $142-143\,^{\circ}\text{C}$ (recrystallization with CH₂Cl₂/cyclohexane). ^{1}H NMR (300 MHz, CDCl₃) δ 8.64 (d, 1H, J=4.1 Hz, CHN); 7.85–7.18 (m, 14H, CH=CH, C₆H₄COC₆H₅ and 3H of pyridinyl). ^{13}C NMR (75 MHz, CDCl₃) δ 196.1 (CO); 155.0 [C₅H₄N, (i)]; 149.8 (C₅H₄N, adjacent to N); 140.7 [C₆H₄, (i), linked CH=CH]; 137.7, 136.9, 136.7 (2C), 132.4 (2C), 131.6, 130.7 (2C), 130.3, 129.9 (2C), 128.3 (4C), 126.9 (4C), 122.6 (2C) (CH=CH, 17C of benzene ring and 3C of pyridinyl). GCMSm/z (% relative intensity): 285 (M⁺, 31), 284(100), 207(1), 180(7), 152(5), 12 (2), 105(5), 89(1), 77 (10). Anal. calcd for C₂₀H₁₅NO: C, 84.21; H, 5.26; N, 4.91. Found: C, 84.48; H, 5.44; N, 4.75.

(E)-2-(2-Methoxycarbonylstyryl)pyridine **2k**

Yellow viscous oil. 1H NMR (300 MHz, CDCl₃) δ 8.61 (d, 1H, J=4.8 Hz, CHN); 8.40 (d, 1H, J=16.1 Hz, CH=CH); 7.95 (d, 1H, J=7.9 Hz, 1H of benzene ring); 7.73–7.05 (m, 7H, CH=CH, 3H of pyridinyl and 3H of benzene ring); 3.93 (s, 3H, OCH₃). 13 C NMR (75 MHz, CDCl₃) δ 167.7 (CO); 155.6 [C₅H₄N, (i)]; 149.1(C₅H₄N, adjacent to N), 138.4 [C₆H₄, (i), linked CH=CH]; 136.9, 132.3, 132.2, 130.7, 130.5, 129.0, 127.9, 127.4, 122.3, 121.7 (CH=CH, 5C of benzene ring and 3C of pyridinyl), 52.2 (OCH₃). GCMS m/z (% relative intensity): 239 (M⁺, 1), 238(4), 224(9), 214(15), 206(3), 180(100), 167(3), 152(8), 127(2), 101(2), 89(4), 77(4). Anal. calcd for C₁₅H₁₃NO₂: C, 75.31; H, 5.44; N, 5.86. Found: C, 75.09; H, 5.67; N, 5.70.

Acknowledgments

This project (20573061) was supported by National Natural Science Foundation of China and Specialized Research Fund for the Doctoral Program of Higher Education (20060003079).

References

- [1] R. F. Heck, Acc. Chem. Res. 1979, 12, 146.
- [2] G. D. Jr. Daves, A. Hallberg, Chem. Rev. 1989, 89, 1433.
- [3] W. Cabri, I. Candiani, Acc. Chem. Res. 1995, 28, 2.
- [4] I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009.
- [5] F. Berthiol, M. Feuerstein, H. Doucet, M. Santelli, *Tetrahedron Lett.* 2002, 43, 5625.
- [6] A. Papp, G. Galbács, Á. Molnár, Tetrahedron Lett. 2005, 46, 7725.
- [7] S. Li, Y. Lin, H. Xie, S. Zhang, J. Xu, Org. Lett. 2006, 8, 391.
- [8] X. Cui, Z. Li, C.-Z. Tao, Y. Xu, J. Li, L. Liu, Q. Guo, Org. Lett. 2006, 8, 2467.
- [9] Ö. Aksin, H. Türkmen, L. Artok, B. Cetinkaya, C. Ni, O. Büyükgüngör, E. Özkal, J. Organomet. Chem. 2006, 691, 3027.
- [10] N. Iranpoor, H. Firouzabadi, R. Azadi, Eur. J. Org. Chem. 2007, 2197.
- [11] X. Cui, Y. Zhou, N. Wang, L. Liu, Q.-X. Guo, Tetrahedron Lett. 2007, 48, 163.
- [12] T. Sakamoto, H. Arakida, K. Edo, H. Yamanaka, Chem. Pharm. Bull. 1982, 30, 3647.
- [13] D. A. Alonso, C. Nájera, M. C. Pacheco, Adv. Synth. Catal. 2002, 344, 172.
- [14] V. Polshettiwar, P. Hesemann, J. J. E. Moreau, *Tetrahedron* 2007, 63, 6784.
- [15] A. Spannenberg, P. Arndt, W. Baumann, V. V. Burlakov, U. Rosenthal, S. Becke, T. Weiss, Organometallics 2004, 23, 3819.
- [16] H.-F. Klein, S. Camadanli, R. Beck, U. Floerke, Chem. Commun. 2005, 381.
- [17] X.-F. Shi, Z.-Y. Xing, L. Wu, W.-Q. Zhang, Inorg. Chim. Acta 2006, 359, 603.
- [18] C.-M. Chung, A. Kunita, K. Hayashi, F. Nakamura, K. Saigo M. Hasegawa, J. Am. Chem. Soc. 1991, 113, 7316.
- [19] W.-S. Kim, D.-K. Ahn, M.-W. Kim, Macromol. Chem. Phys. 2004, 205, 1932.

- [20] M.-W. Kim, S.-H. Hyun, J.-Y. Kong, K.-B. Yoon, L.-S. Park, W.-S. Kim, J. Ind. Engng Chem. 2006, 12, 261.
- [21] G. Zheng, L. P. Dwoskin, A. G. Deaciuc, J. Zhu, M. D. Jones, P. A. Crooks, *Bioorg. Med. Chem.* 2005, 13, 3899.
- [22] K. J. Wilson, M. B. van Niel, L. Cooper, D. Bloomfield, D. O'Connor, L. R. Fish, A. M. MacLeod, Bioorg. Med. Chem. Lett. 2007, 17, 2643.
- [23] S.-J. Wang, T. S. Sihra J. Pharmac. Exp. Ther. 2004, 309, 951.
- [24] S. Miwatashi, Y. Arikawa, K.-I. Naruo, K. Igaki, Y. Watanabe, H. Kimura, T. Kawamoto, S. Ohkawa, Chem. Pharm. Bull. 2005, 53, 410.
- [25] C. Yi, R. Hua, J. Org. Chem. 2006, 71, 2535.
- [26] C. Yi, R. Hua, Tetrahedron Lett. 2006, 47, 2573.
- [27] There are only two examples on the cross-coupling reaction of 2-vinylpyridine with aryl iodide to give trans-2-styrylpyrindines, see ref. 5 and N. Nikbin, M. Ladlow, S. V. Ley, Org. Process Res. Dev. 2007, 11, 458.
- [28] W. A. Herrmann, K. Öfele, D. V. Preysing, S. K. Schneider, J. Organomet. Chem. 2003, 687, 229.
- [29] M. T. Reetz, J. G. de Vries, Chem. Commun. 2004, 1559.
- [30] I. Pryjomska-Ray, A. M. Trzeciak, J. Ziólkowski, J. Mol. Catal. A, Chem. 2006, 257, 3.
- [31] V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 1996, 96, 759.
- [32] J. P. Sauvage, Acc. Chem. Res. 1998, 31, 611.
- [33] C. Richardson, P. J. Steel, D. M. D'Alessandro, P. C. Junk, F. R. Keene, J. Chem. Soc., Dalton Trans. 2002, 2775.
- [34] G. T. Crisp, Chem. Soc. Rev. 1998, 27, 427.
- [35] A. Jutand, Pure Appl. Chem. 2004, 76, 565.
- [36] U. Christmann, R. Vilar, Angew. Chem. Int. Edn 2005, 44, 366.
- [37] A. F. Schmidt, A. A. Halaiqa, V. V. Smirnov, Synlett 2006, 2861.
- [38] L. G. Quan, M. Lamrani, Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 4827.
- [39] G. Galiazzo, P. Bortolus, F. Masetti, J. Chem. Soc., Perkin Trans. 2 1975, 1712.
- [40] G. G. Aloisi, U. Mazzucato, A. Spalletti, G. Galiazzo, Z. Phys. Chem. (Munich) 1982, 133, 107.
- [41] W. J. Dale, C. M. Ise, J. Am. Chem. Soc. 1954, 76, 2259.
- [42] C. E. Aun, T. J. Clarkson, D. A. R. Happer, J. Chem. Soc., Perkin Trans. 2, 1990, 645.
- [43] A. L. Marzinzik, P. Rademacher, Synthesis 1995, 1131.
- [44] G. R. Newkome, J. M. Robinson, Tetrahedron Lett. 1974, 691.