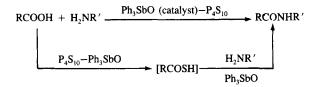
### COMMUNICATION

# Triphenylstibine oxide—phosphorus(V) sulfide as a novel condensation catalyst system: application to the synthesis of dipeptides

Ryoki Nomura,\* Yasuhiro Yamada and Haruo Matsuda

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada-Oka, Suita, Osaka 565, Japan

Received 17 March 1989 Accepted 13 April 1989


Triphenylstibine oxide (Ph<sub>3</sub>SbO) and phosphorus(V) sulfide (P<sub>4</sub>S<sub>10</sub>) synergistically catalyzed the aminolysis of N-protected amino-acids with amino-acid esters in benzene. Ph<sub>3</sub>SbO accelerated both the initial conversion of carboxylic moieties into the corresponding thiocarboxylic moieties by P<sub>4</sub>S<sub>10</sub> and the subsequent aminolysis of the resulting thiocarboxylic acids. Thus, dipeptides such as Z-A-A'-OEt (where  $Z=PhCH_2OC(O)$ — and  $A,A'=Ala,Gly;\ Gly,Gly;\ Leu,Gly;\ Phe,Gly;\ Phe,Leu;\ Ser,Gly;\ Val,Gly,\ respectively) were conveniently prepared even at 35°C.$ 

Keywords: Triphenylstibine oxide, phosphorus pentasulfide, catalytic peptide synthesis, amidation, thiocarboxylic acids

## **INTRODUCTION**

In previous papers,<sup>1,2</sup> we have reported a catalytic amidation using triphenylantimony dicarboxylates as key intermediates. The amidation process consisted of the initial condensation step in which triphenylstibine oxide (Ph<sub>3</sub>SbO) reacted with carboxylic acids to afford the intermediate triphenylantimony dicarboxylates, and a subsequent aminolysis step. However, the catalyst system possessed two disadvantages;<sup>2</sup> the first is low turnover numbers (not exceeding 11), and the second is a low reaction rate at below 50°C.

In our continuing efforts to enhance the catalytic activity of Ph<sub>3</sub>SbO for the amidation, we have found that Ph<sub>3</sub>SbO can catalyze the aminolysis of thiocarboxylic acids by primary and secondary amines.<sup>3</sup> This observation encouraged us to extend the applications of Ph<sub>3</sub>SbO as catalysts; i.e. if the starting carboxylic acids could be conveniently converted into thiocarboxylic acids in situ, a novel direct amidation process would be realized. Now, we describe a novel sulfuration system consisting of phosphorus pentasulfide (P<sub>4</sub>S<sub>10</sub>) and catalytic amounts of Ph<sub>3</sub>SbO which is applicable to the building up of dipeptide linkages as shown in Scheme 1.



**Scheme 1** R and R' indicate N-protected and C-protected amino-acids, respectively.

#### **EXPERIMENTAL**

#### General

Melting points are uncorrected. The values of  $[\alpha]_D$  were measured by a Jasco DIP-181 polarimeter using ethanol (spectroscopic grade) as a solvent at 25°C. N-Protected aminoacids were prepared in the usual manner. Triphenylstibine oxide was synthesized as reported previously. Other reagents and solvents were used as received.

<sup>\*</sup>Author to whom correspondence should be addressed.

| Dipeptide                     | T (°C) | <i>t</i> (h) | Yield (%)       | Mp (lit.) (°C)            | [α] <sub>D</sub> (lit.) (°) |
|-------------------------------|--------|--------------|-----------------|---------------------------|-----------------------------|
| P= LauChi OFt                 | 35     | 2            | 66              | 156-157 (156-157)         | $-23.0 (-34.0^{5})$         |
| Bz—LeuGly—OEt<br>Z—AlaGly—OEt | 35     | 2            | 90              | 97-98 (97-98)             | $-19.6 (-21.0^9)$           |
| Z—GlyGly—OEt                  | 35     | 0.5          | 83              | 81 (80-81 <sup>10</sup> ) | 17.0 ( 21.0 )               |
|                               | 35     | 7            | tr <sup>b</sup> |                           |                             |
|                               | 35     | 7            | tr <sup>c</sup> |                           |                             |
|                               | 35     | 7            | 25 <sup>d</sup> |                           |                             |
|                               | 35     | 7            | 56°             |                           |                             |
| Z-LeuGly-OEt                  | 35     | 2            | 75              | 100-102 (98-99)           | $-26.6 \ (-26.5^{11})$      |
| Z-PheGly-OEt                  | 40     | 2            | 81              | 111-113 (110-112)         | $-16.6 (-16.8^{12})$        |
| Z-PheLeu-OEt                  | 40     | 2            | 73              | 102-103 (110-111)         | $-22.9 (-24.7^{13})$        |
| Z-SerGly-OEt                  | 35     | 2            | 51              | 105-107 (106-107)         | $-5.6 \ (-5.9^{13})$        |
| Z-ValGly-OEt                  | 35     | 2            | 99              | 172-173 (163-164)         | $-26.9 (-27.2^{10})$        |

Table 1 Dipeptide synthesis catalyzed by Ph<sub>3</sub>SbO-P<sub>2</sub>S<sub>5</sub> system<sup>a</sup>

# **Dipeptide synthesis**

Typical reaction procedure was as follows; into a suspension of  $Ph_3SbO$  (0.54 mmol) in benzene (30 cm³),  $P_4S_{10}$  (1 mmol) and Z-aminoacid (5 mmol) were added and the mixture was stirred at 50°C for 0.5–1 h. After cooling to room temperature, the coupling aminoacid ethyl ester hydrochloride and triethylamine (5 mmol each) in benzene (20 mmol) were added dropwise. Work-up was done with general ethyl acetate extraction followed by washing with aqueous citric acid and neutralization. The dipeptides were crystallized from ethyl acetate/hexane.

#### RESULTS AND DISCUSSION

The results of the dipeptide synthesis using  $Ph_3SbO-P_4S_{10}$  catalyst are summarized in Table 1. The coupling reactions of Z—Gly—OH with H—Gly—OEt proceeded even at 35°C in the presence of the  $Ph_3SbO-P_4S_{10}$  system, and Z—Gly—Gly—OEt was obtained in 83% yield. In contrast, the reaction did not occur in the absence of  $Ph_3SbO$  and/or  $P_4S_{10}$  at the same temperature. Thus, it can be said that  $Ph_3SbO$  and  $P_4S_{10}$  synergistically accelerate the amidation and the optimal ratio of  $Ph_3SbO/P_4S_{10}$  was found to be 0.5/1 in molar terms. Other dipeptides could be also prepared under similar conditions by using the  $Ph_3SbO-P_4S_{10}$  system without significant racemization occurring. Further, the Young test (preparation

of Bz—LeuGly—OEt)<sup>5</sup> also shows only a small extent of racemization throughout this amidation process.

In our experience, P<sub>4</sub>S<sub>10</sub> is a less attractive phosphorus compound in synthetic chemistry and its use is almost solely limited to the preparation of thiocarbonyls from the corresponding carbonyls under somewhat severe conditions.<sup>6</sup> Recently, Davy and Metzner have reported that P<sub>4</sub>S<sub>10</sub> is useful for the synthesis of dithioesters directly from carboxylic acids and alcohols at above 170°C. Thus, in this catalytic amidation, we consider that P<sub>4</sub>S<sub>10</sub> must convert carboxylic acid into thiocarboxylic moieties with the assistance of Ph<sub>2</sub>SbO in situ. In addition, it is known that thiocarboxylic acids are accessible for peptide synthesis as active C-terminals<sup>8</sup> and Ph<sub>3</sub>SbO can also accelerate such aminolysis.3 Consequently, we felt Ph<sub>3</sub>SbO was an effective catalyst in both the sulfuration and aminolysis steps.

Next we attempted to check whether the  $Ph_3SbO-P_4S_{10}$  system could convert the carboxylic acids into thiocarboxylic ones or not. The reaction of acetic acid with the  $Ph_3SbO-P_4S_{10}$  system in benzene was conducted and thioacetic acid was isolated in quantitative yield after reaction at 35°C for 1 h, whereas acetic acid did not react with  $P_4S_{10}$  in the absence of  $Ph_3SbO$  at below 80°C in benzene and the reagents could be recovered. These results support the view that the conversion of a carboxylic acid into the corresponding thiocarboxylic acid by  $P_4S_{10}$  was promoted with  $Ph_3SbO$ . It is interesting that  $Ph_3SbO$  assists the sulfuration by  $P_4S_{10}$  at such a low temperature in

 $<sup>^{</sup>a}Z$ —A—OH/H—A′—OEt/Ph<sub>3</sub>SbO/P<sub>4</sub>S<sub>10</sub> = 5/5/0.5/1 mmol.  $^{b}Absence$  of P<sub>4</sub>S<sub>10</sub>.  $^{c}Absence$  of Ph<sub>3</sub>SbO.  $^{d}Ph_3SbO/P_4S_{10}$  = 2/1.25 mmol.  $^{c}Ph_3SbO/P_4S_{10}$  = 0.5/0.6 mmol.

contrast to the conventional sulfuration reaction which has to be carried out at 100-200°C.<sup>6,7</sup>

## REFERENCES

- Nomura, R, Wada, T, Yamada, Y and Matsuda, H Chem. Lett., 1986, 1901
- Nomura, R, Yamada, Y and Matsuda, H Appl. Organomet. Chem., 1988, 2: 557
- 3. Nomura, R, Wada, T, Yamada, Y and Matsuda, H Chem. Express, 1988, 3: 543
- Carter, H E, Frank, R L and Johnston, H W Org. Synth., 1955, Coll. Vol. III: 168

- 5. Williams, M W and Young, G T J. Chem. Soc., 1963, 881
- Schwarz, G Org. Synth., 1959, Coll. Vol. III: 332; Voss, J Liebigs Ann. Chem., 1971, 746: 92
- Davy, H and Metzner, P Chem. Ind. (London), 1985, 824;
  J. Chem. Res. (S), 1985, 272
- Yamashiro, D and Blake, J Int. J. Pept. Prot. Res., 1981, 18: 383
- Ueda, M, Kawaharasaki, N and Imai, Y Bull. Chem. Soc. Jpn, 1984, 57: 85
- Kinoshita, H, Inamoto, K, Miyano, O and Kotake, H Bull. Chem. Soc. Jpn, 1979, 52: 2619
- Matsuda, F, Itoh, S, Hattori, N, Yanagiya, H and Matsumoto, T Tetrahedron, 1985, 41: 3625
- Mukaiyama, T, Matsueda, R and Suzuki, M Tetrahedron Lett., 1970, 1901
- 13. Yamada, S-I and Takeuchi, Y Tetrahedron Lett., 1971, 3595