Dibutyltin-3-hydroxyflavone bromide: a fluorescent inhibitor of F₁F₀-ATPase

Julnar Usta* and David E Griffiths†
Department of Chemistry, University of Warwick, Coventry CV47AL, UK

Dibutyltin-3-hydroxyflavone bromide [Bu₂SnBr-(of) is a fluorescent inhibitor (excitation max, 395 nm; emission max., 450 nm) of mitochondrial F_1F_0 -ATPase which does not inhibit F_1 -ATPase. Bu₂SnBr(of) binding to mitochondria and submitochondrial particles results in a 10-fold fluorescence enhancement which correlates with the amount of F₁F₀-ATPase in the inner membrane. Enhancement is not affected by respiratory-chain substrates, ATP, uncoupling agents, ionophores or respiratory-chain inhibitors. It is reversed by tributyltin chloride (Bu₃SnCl), indicating competition for a common triorganotin-binding site on the F₀ segment of F₁F₀-ATPase. Enhancement is not reversed by dialkyltins, monoalkyltins, tributyl-lead acetate, efrapeptin or oligomycin. Bu₂SnBr(of) is thus a new class of fluorescent probe of the F₀ segment of F₁F₀-ATPase which titrates F₀.

Keywords: Dibutyltin-3-hydroxyflavone, fluorescence probe, F_1F_0 -ATPase, oligomycin, tributyltin-binding site, mitochondria

INTRODUCTION

The effects of organotin compounds on mitochondrial and chloroplast energetics have been widely investigated¹⁻³ as also have their effects as environmental hazards.^{4,5}

A major mitochondrial site of action of the trialkyltins (R₃SnX) and the dialkyltins (R₂SnX₂) is the F₀ segment of the mitochondrial F₁F₀-ATPase complex^{1,6} but their site(s) of action have not been defined.^{7,8} A recent survey of various fluorescent organotins indicates that organotinflavone complexes have properties suitable for their use as fluorescence probe inhibitors of mitochondrial ATPase.⁹ One of these compounds, dibutyltin-3-hydroxyflavone bromide

[Bu₂SnBr(of)], has been investigated further and this paper describes studies of its use as a fluorescent probe of mitochondrial F_1F_0 -ATPase and its effects on mitochondrial energetics. It is shown that Bu₂SnBr(of), a five-coordinate tin complex, ¹⁰ is a specific inhibitor which reacts at the F_0 segment of F_1F_0 -ATPase and has useful properties as a fluorescent probe which titrates mitochondrial F_1F_0 -ATPase.

MATERIALS AND METHODS

3-Hydroxyflavone (of) and dibutyltin dibromide (Bu₂SnBr₂) were purchased from Chemical Co. (UK) and were used without further purification. The sources of other organotin compounds and reagents were as previously described, 6,8,9 as also were the preparations of partially purified F₁-ATPase, liver mitochondria, heart mitochondria, and liver and heart submitochondrial particles (SMP).^{6,8,9} Mitochondria and SMP were stored at -25 °C in HSE buffer (10 mm-Hepes, 0.25 m-sucrose, 0.5 mm-EGTA, pH 7.4). The assays for mitochondrial ATPase, mitochondrial respiration at the oxygen electrode and oxidative phosphorylation were as described previously. 6,8,9 Inorganic phosphate was assayed as described in Ref. 11. Mitochondrial membrane potential $(\Delta \psi)$ was determined by the fluorimetric method of Mewes and Rafael¹² as predescribed¹³ viously using 2-(4'-dimethylaminostyryl)-1-methylpyridinium iodide as a fluorescent indicator. Spectroscopic and fluorimetric methods are described in Ref. 9 and additional details are presented in the legends to figures.

Preparation of Bu₂SnBr(of)

Bu₂SnBr(of) was prepared by the following modification of the method of Blunden and Smith¹⁰ by mixing ethanolic solutions of 3-hydroxyflavone and dibutyltin dibromide: equal volumes of hot (>60°) ethanolic solutions of 3-hydroxyflavone

^{*} Permanent address: Department of Biochemistry, School of Medicine, American University of Beirut, Lebanon.

[†] To whom correspondence should be addressed.

(10 mm) and Bu₂SnBr₂ (10 mm) were mixed and stirred in the dark overnight at room temperature. The reaction could be followed by spectrophotometry and spectrofluorimetry by removing small samples and diluting in ethanol. On mixing, the absorption peak of 3-hydroxyflavone at 340 nm, $E_{\rm M}=1.2\times10^4$, declined to $E_{\rm M}=4\times10^3$ and a new absorption peak at 395 nm appeared, $E_{\rm M}=8\times10^3$. Concomitantly the 3-hydroxyflavone fluorescence emission peak at 535 nm (excitation, 350 nm) declined and was replaced by a new emission peak at 450 nm (excitation, 395 nm). The reaction was essentially complete in 30 min.

The resulting 5 mm solution of Bu₂SnBr(of) was used directly in all experiments and was stable for at least two weeks. This simple method gave a product with reproducible properties which could be made shortly before use. This procedure avoids any variation due to dismutation reactions when solvent is removed by rotary evaporation and the resulting oil is redissolved in ethanol. The identity of the product was confirmed by mass spectrometry.

Concentrated ethanolic solutions of Bu₂SnBr(of) disperse poorly in aqueous buffers so they should be diluted with ethanol to the lowest operational concentration before dispersion into HSE buffer. Plastic cuvettes and pipette tips should be pre-wetted with HSE buffer to avoid adsorption effects.

Bu₂SnBr(of) has been used in all the experiments described below but equivalent results are obtained with Bu₂SnCl(of) prepared in a similar fashion.

Fluorescence properties of Bu₂SnBr(of)

Ethanolic solutions of Bu₂SnBr(of) have marked fluorescence (excitation max., 395 nm; emission max., 450 nm), which decreases markedly in aqueous solutions with a small shift in the emission maximum to 445 nm. The fluorescence is polarity-dependent being 30 times greater in ethanol than in water. The fluorescence enhancement which is observed on binding of Bu₂SnBr(of) to mitochondrial membranes (see below) thus appears to be due to binding to a specific apolar site in the mitochondrial inner membrane.

Safety and toxicology

All organotin compounds should be handled with care. Many are neurotoxic and immunotoxic and can be absorbed through the skin. Handling of liquid and solid samples should be carried out in a fume cupboard with adequate glove and facemask protection.

RESULTS

Inhibition of ADP-stimulated respiration by Bu₂SnBr(of)

Tributyltin chloride (Bu₃SnCl) is known to inhibit ADP-stimulated respiration in coupled mitochondria with an apparent I_{50} value of 0.4 nmol (mg protein)⁻¹. In similar experiments Bu₂SnBr(of) inhibits ADP-stimulated respiration (state 3) in liver mitochondria with an I_{50} value of approximately 1.5–2 nmol (mg protein)⁻¹ and appears to titrate a mitochondrial component in similar fashion to Bu₃SnCl in studies reported by Sone and Hagihara. Bu₃SnBr(of) does not inhibit uncoupler-stimulated respiration with succinate or pyruvate/malate as substrates.

Inhibition of mitochondrial F_1F_0 —ATPase and oxidative phosphorylation

Bu₂SnBr(of) inhibits mitochondrial F₁F₀-ATPase in liver and heart mitochondria [I₅₀ values 0.9-1.0 nmol (mg protein)⁻¹] and liver and heart submitochondrial particles (SMP) with I_{50} values in the range of 0.7-0.9 nmol (mg protein)⁻¹, values which are 20–25% lower than those obtained for Bu₃SnCl. Figure 1 shows the results obtained with liver SMP and liver mitochondria and also demonstrates that Bu₂SnBr(of) does not inhibit partially purified F₁-ATPase¹⁴ at levels up to 20 nmol (mg protein)⁻¹, indicating that the site of action is on the F_0 segment of F_1F_0 -ATPase, similarly to that of Bu₃SnCl. Figure 1 also shows that Bu₂SnBr(of) inhibits oxidative phosphorylation in liver mitochondria with glutamate/malate as substrate $[I_{50} 1-1.2 \text{ nmol (mg protein)}^{-1}]$. This I_{50} value is similar to that obtained with F₁F₀-ATPase and does not show the marked difference in sensitivity observed with Bu₃SnCl in previous studies. 15

Effects of Bu₂SnBr(of) on mitochondrial $\Delta\psi$

Studies of mitochondrial $\Delta \psi$ were made by the fluorimetric assay of the distribution of 2-(4'-dimethylaminostyryl)-1-methylpyridinium iodide

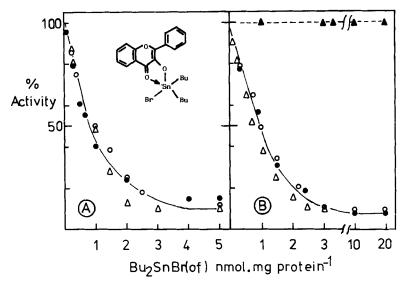


Figure 1 Inhibition of oxidative phosphorylation and ATPase by Bu₂SnBr(of).

- (A) Oxidative phosphorylation was assayed as described in Refs 13 and 15 in a glucose hexokinase trap system containing 250 mm-sucrose; 50 mm-Hepes-KOH, pH 7.4; 20 mm-glucose; 5 mm-potassium phosphate; 2 mm-MgSO₄; 2 mm-ADP; 0.5 mm-EDTA; 5 units of yeast hexokinase (Sigma type F 300); and 5 mm oxidizable substrate. ATP synthesis was measured as the disappearance of inorganic phosphate¹¹ in 20 min. temp., 25 °C. ○, Liver mitochondria (glutamate/malate), 100% = 120 nmol min⁻¹ (mg protein⁻¹); ♠, heart SMP (succinate), 100% = 94 nmol min⁻¹ (mg protein)⁻¹; △, liver mitochondria (glutamate/malate), Bu₃SnCl used as inhibitor. Insert: Structural formula of Bu₂SnBr(of).
- (B) ATPase was assayed as decribed in Refs 13 and 15 by the appearance of inorganic phosphate¹¹ in a system containing 250 mm-sucrose; 50 mm-Hepes-KOH, pH 7.4; 2 mm-MgSO₄ and 2 mm-ATP. O, Liver mitochondria (+1 μm-CCCP), 100% = 130 nmol min⁻¹ (mg protein); ♠, liver SMP (+1 μm-CCCP), 100% = 810 nmol min⁻¹ (mg protein); △, heart SMP (+1 μm-CCCP), 100% = 1420 min⁻¹ (mg protein)⁻¹; ♠, Crude F₁-ATPase, 100% = 9.4 μmol min (mg protein)⁻¹.

Maximal inhibition of oxidative phosphorylation and ATPase was 85–90%. The remaining activity was inhibited by 5 µg cm⁻³ oligomycin.

(DASPMI). 12, 13 Figure 2 shows that Bu₂SnBr(of) causes a rapid decline in $\Delta \psi$ generated by MgATP due to inhibition of proton-translocating F_1F_0 -ATPase apparent 2.5 nmol I_{50} (mg protein)⁻¹]. In this assay it is markedly less effective than Bu₃SnCl and other F₀ proton channel inhibitors such as dicyclohexylcarbodiimide (DCCD) and oligomycin. Bu₂SnBr(of) has little or no effect on $\Delta \psi$ generated by substrate oxidation at levels up to $20 \text{ nmol (mg protein)}^{-1}$. This is in marked contrast to Bu₃SnCl, which causes a marked decline in respiration-generated $\Delta \psi$ at levels greater than 3 nmol (mg protein)⁻¹ (Fig. 2A).

Fluorescence Studies

The effects of $Bu_2SnBr(of)$ on ATP-generated $\Delta\psi$, oxidative phosphorylation, ADP-stimulated respiration, mitochondrial F_1F_0 -ATPase and the lack of inhibition of F_1 -ATPase described above, all indicate that $Bu_2SnBr(of)$ interacts with the F_0 segment of F_1F_0 -ATPase. The site of interaction is probably at the same site as the Bu_3SnCl interaction site on F_0 , or at a related site. This conclusion is supported by fluorescence studies of the interaction.

Addition of Bu₂SnBr(of) to mitochondria and submitochondrial particles (SMP) results in a

major increase in the fluorescence emission with a shift in the emission maximum from 450 nm to 445 nm. Binding of Bu₂SnBr(of) to mitochondria and SMP results in an apparent 3-fold and a 6-7-fold fluorescence enhancement, respectively (Fig. 3A). However, the true fluorescence enhancement, after correction for light scattering, is approximately 10-fold for mitochondria and for SMP. Light scattering is maximal for mitochondria, markedly lower for SMP and minimal for solubilized F_1F_0 -ATPase or F_0 preparations. Maximal fluorescence enhancement (FE ΔF) is observed at 5 μ M-Bu₂SnBr(of), the concentration used in the following experiments (fig. 3).

Fluorescence enhancement (binding) is not affected by the energy state of the membrane generated by respiratory substrates or by ATP. In addition, uncoupling agents, ionophores and respiratory-chain inhibitors do not affect fluorescence enhancement, whether added after Bu₂SnBr(of) or by preincubation before addition of Bu₂SnBr(of) (Fig. 3A).

Figure 3(B) shows that addition of Bu₃SnCl (2:1 molar ratio) to Bu₂SnBr(of) reversed the fluorescence enhancement obtained on addition of Bu₂SnBr(of), indicating competition for a common binding site: 50% reversal by Bu₃SnCl was achieved at a molar ratio of 0.3:1 [Bu₃SnCl/Bu₂SnBr(of)] (Fig. 3B). Similar results were obtained with other R₃SnX compounds,

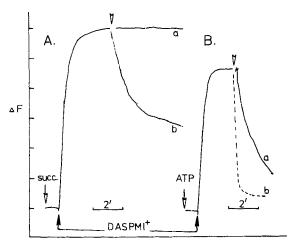


Figure 2 Effects of Bu₂SnBr(of) on mitochondrial Δ. Mitochondrial $\Delta \psi$ was estimated as described in Refs 12 and 13. Conditions: 1 mg liver mitochondria; 1 μm-DASPMI⁺; 1 μm-tetraphenylborate; 1 μm-rotenone; HSE buffer, pH 7.4. Total volume, 2.0 cm³. Excitation, 480 nm; emission, 565 nm. Additions: (A) succinate, 5 mm final; a, 20 nmol Bu₂SnBr(of); b, 3 nmol Bu₃SnCl. (B) ATP-Mg²⁺, 5 mm final; a, 2.5 nmol Bu₂SnBr(of); b, 2 nmol Bu₃SnCl.

(viz. Pr₃SnCl, Et₃SnCl, Me₃SnCl) but these compounds were markedly less effective than Bu₃SnCl, with molar ratios for 50% reversal of 2:1, 15:1 and 250:1, respectively. The effectiveness of reversal by R₃SnX compounds thus correlates with the I_{50} values for ATPase inhibition; i.e. $Bu_3SnCl < Pr_3SnCl < Et_3SnCl < Me_3SnCl$. ¹⁶ Figure 3(C) shows that preincubation with Bu₃SnCl at a 1:1 molar ratio and lower ratios was more effective than addition membrane-bound to Bu₂SnBr(of), again indicating competition for a common binding site.

Reversal is specific for R_3SnX compounds, particularly Bu_3SnCl , as addition of Bu_2SnBr_2 , $BuSnCl_3$ or Bu_3PbOAc to membrane-bound $Bu_2SnBr(of)$ at 2:1 molar ratios did not cause reversal. Similar negative results were obtained on addition of the F_0 inhibitor, oligomycin [5 µg (mg protein⁻¹)], and the F_1 -ATPase inhibitor, efrapeptin [2µg (mg protein⁻¹)]; fig. 3B, trace d.

Titration of F₁F₀-ATPase by Bu₂SnBr(of)

Successive additions of Bu₂SnBr(of) to mitochondrial membranes led to increases in fluorescence enhancement $[FE\Delta F \text{ (mg protein)}^{-1}]$ until the binding site was titrated. Figure 4 shows that the differences in mitochondrial inner membrane content (cytochrome content and F₁F₀-ATPase content), which are seen in the electron microscope as the increases in number of cristae in liver mitochondria, kidney mitochondria and heart mitochondria, 17 were reflected in increasing titration values for fluorescence enhancement with Bu₂SnBr(of). The increase in fluorescence enhancement in the series heart>kidney>liver correlates with the content of membrane-bound cytochromes (Fig. 4). The best correlation is seen with cytochrome b ($\Delta A_{560-575}$) and to a lesser extent with cytochrome aa_3 ($\Delta A_{605-575}$ and $\Delta A_{605-630}$). There is no correlation with the cytochrome c content, which probably reflects the variable degree of loss of cytochrome c during the isolation of liver, kidney and heart mitochondria. As cytochrome content is known to correlate with ATPase complex content, fluorescence enhancement on addition of Bu₂SnBr(of) would appear to titrate the mitochondrial F₁F₀-ATPase.

Similar results have been obtained in studies with heart mitochondria and derived submitochondrial particles (SMP) which are inner membrane vesicles containing the mitochondrial membrane-bound cytochromes and ATPase complex. Similar titrations of heart mitochondria and

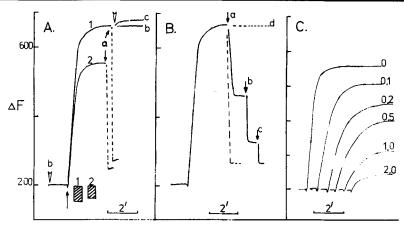


Figure 3 Fluorescence enhancement (binding) of Bu₂SnBr(of).

- (A) To 1 mg liver mitochondria in HSE buffer was added 1 or 2 μl of 5 mm-Bu₂SnBr(of). Fluorescence was measured in a Perkin-Elmer LS5 spectro-fluorimeter at room temp. (18-20°C). Excitation, 395 nm; emission, 450 nm. The hatched area indicates fluorescence due to Bu₂SnBr(of) before addition of mitochondria. Total volume, 2.0 cm³. Additions: 1, 10 nmol Bu₂SnBr(of); 2, 5 nmol Bu₂SnBr(of); (a) 20 nmol Bu₃SnCl; (b) glutamate/malate or succinate or ATP; rotenone or antimycin A; CCCP or gramicidin or valinomycin-K⁺ added before or after Bu₂SnBr(of); (c) 20 nmol Bu₂SnBr₂.
- (B) Conditions as in A. Additions: (a) 3 nmol Bu₃SnCl; (b) 6 nmol Bu₃Sn Cl; (c) 6 nmol Bu₃SnCl.
- (C) Conditions as in A. 5 nmol Bu₂SnBr(of) added; 0 indicates no addition; 0.1–2.0 indicates preincubation with 0.1–2.0 nmol Bu₃SnCl for 2 min before addition of Bu₂SnBr(of). $\Delta F1$, initial baseline reading; $\Delta F2$, final reading after addition of Bu₂SnBr(of); FE $\Delta F = \Delta F2 \Delta F1$. With 1 mg mitochondrial protein, the initial fluorescence reading ($\Delta F1$) is approximately 30% of the total fluorescence ($\Delta F2$) and is due to light scattering.

SMP with $Bu_2SnBr(of)$ showed that the fluorescence enhancement $[FE\Delta F \ (mg\ protein)^{-1}]$ obtained with heart SMP was approximately two-fold higher than that obtained with heart mitochondria. Table 1 shows that there is a parallel increase in membrane-bound cytochromes and a parallel increase in oligomycin-sensitive ATPase activity. Fluorescence enhancement $[FE\Delta F \ (mg\ protein)^{-1}]$ thus titrates a component of the mitochondrial inner membrane which appears to be a component of the F_0 segment of the F_1F_0 -ATPase complex.

Location and nature of the Bu₂SnBr(of) binding site

The interaction of Bu₂SnBr(of) with mitochondrial inner membrane is of high affinity with an apparent $K_d < 1 \times 10^{-7}$. Very little bound Bu₂SnBr(of) is removed by washing mitochondria or SMP by centrifugation and resuspension. Thus tight binding to an apolar site on the inner membrane, probably F_0 , is indicated.

There is no information on the location of the interaction site of $Bu_2SnBr(of)$ with individual components of F_0 at present, although Factor B has been suggested as a possible interaction site for trialkyltins. 20 Identification of the binding components will require the preparation of radioactive $Bu_2SnBr(of)$ labelled in the n-butyl and/or the flavone moiety. However, in preliminary studies of the binding of $Bu_2SnBr(of)$ -labelled mitochondrial membranes, the following observations have been made.

- (1) During preparation of F₁-ATPase from Bu₂SnBr(of)-labelled particles by the chloroform extraction method,14 little or no Bu₂SnBr(of) was found in the F₁-ATPase-containing supernatant or the lipid-containing chloroform infranatant. almost all the fluorescent label is associated with the membrane protein located at the interface which contains F₀ and the cytochromes of the respiratory chain.
- (2) The site for Bu₂SnBr(of) binding survived treatment with mild detergents during the iso-

198 °J USTA AND D E GRIFFITHS

lation of purified F_1F_0 -ATPase or F_0 complexes from liver mitochondria, 18 complex V from heart mitochondria 19 and lysolecithinsynthase from extracted **ATP** mitochondria.20 As expected, the fluorescence enhancement ratios [FE ΔF (mg protein)⁻¹] observed are in the order ATPase complex> SMP>mitochondria, and the ratio SMP/mitochondria correlates with cytochrome and ATPase content (Table 1). However, the observed fluorescence enhancement ratio for the isolated complexes¹⁸⁻²⁰ is 10-20% lower than expected for the degree of purification of these F-ATPase complexes. In addition, there are significant decreases in the response to addition of Bu₃SnCl (displacement) as compared with the membrane-bound ATPase complex.

This suggests that a structural feature of F_1F_0 -ATPase, forming the trialkyltin-binding site, is modified during the fractionation procedure. Alternatively, variable amounts of a trialkyltin-binding component may be lost

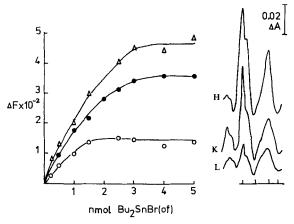


Figure 4 Titration of liver, kidney and heart mitochondria by Bu₂SnBr(of).

Mitochondria were prepared from homogenates of livers, kidneys and hearts from two rats. Titration was by additions of $1 \,\mu$ l of ethanolic $2 \,\text{mm-Bu_2SnBr}(of)$ solutions to mitochondria (0.55 mg protein) suspended in HSE buffer, pH 7.4. Total volume, $2.0 \,\text{cm}^3$. Fluorescence estimation: excitation, 395 nm; emission, 450nm. The fluorescence emission values have been corrected for light scattering by mitochondria. Maximal ΔF is achieved at 4–5 nmol Bu₂SnBr(of). \bigcirc , Liver; \bigcirc , kidney; \triangle , heart. The cytochrome spectra are difference spectra of 5.5 mg cm⁻³ mitochondrial protein cm⁻³, dithionite reduced minus oxidized) solubilized with 0.5% w/v deoxycholate of liver, kidney and heart mitochondria. Wavelength markers, left to right: 560 nm, 575 nm, 605 nm, 630 nm. Spectra: L, liver; K = kidney; H = heart.

during the isolation procedure. In this context it is worthy of note that it is the lysolecithin-extracted ATP synthase complex containing Factor B²⁰ which shows the lowest degree of modification with respect to Bu₂SnBr(of) fluorescence properties on binding.

(3) The development of a simple method for the isolation of the F₀ proton channel from liver mitochondria by McEnery et al. 18 has made it possible to correlate directly the Bu₂SnBr(of) binding site with F₀.

Table 2 shows a specific increase in binding sites, as estimated by $FE\Delta F$ (mg protein)⁻¹, during purification of F_0 . Initial values of FE ΔF in inner-membrane vesicles increase 3– 4-fold after guanidine extraction of washed inner-membrane vesicles. The guanidine extract does not contain any component which binds Bu₂SnBr(of) leading to fluorescence enhancement. CHAPS extraction of the guanidine-extracted membranes leads to a further 2-3-fold increase in (mg protein)⁻¹ in the purified F_0 preparation. The FE ΔF data shown in Table 1 correlate well with the data shown in Table 1 of McEnery et al. 18 and firmly establish the location of the $Bu_2SnBr(of)$ binding site in F_0 .

The good correlation with the degree of purification of F_0 , $FE\Delta F$ values being within 85-90% of the expected values, indicates only minor modification of the organotin-binding site during the isolation procedure. However, the displacement response to addition of equimolar Bu₃SnCl is 30-40% lower as compared with membrane-bound F_0 . This indicates a degree of modification of the binding site and this parameter and others under investigation illustrate the utility and versatility of this reagent in studies of F_0 .

DISCUSSION

Bu₂SnBr(of) is a new type of fluorescent probe for the study of the F_0 segment of the F_1F_0 -ATPase complex in mitochondrial membranes and isolated ATPase complexes. Inhibition of ADP-stimulated respiration, mitochondrial F_1F_0 -ATPase, oxidative phosphorylation and the non-inhibition of F_1 -ATPase all categorize Bu₂SnBr(of) as an F_0 inhibitor which probably acts at the same site as tributyltin and other trialkyltins. This conclusion is supported by

Table 1 Titration of F_1F_0 -ATPase in mitochondria and SMP

Ox heart mitochondria (0.32 mg protein) and heart SMP (0.3 mg protein) were titrated with 5 mM-Bu₂SnBr(of) and the maximum fluorescence enhancement was obtained at 5 μ M-Bu₂SnBr(of). Excitation, 395 nm; emission, 450 nm. HSE buffer, pH 7.4. Total volume, 2.0 cm^3 . FE ΔF was determined by subtraction of the initial baseline reading (ΔF_1) from the maximal fluorescence (ΔF_2) obtained after addition of 5 μ M-Bu₂SnBr(of).

Difference spectra of cytochromes: 3.3 mg protein cm⁻³; dithionite reduced minus oxidized. Solubilized with 0.5% w/v deoxycholate. Cyt b, $\Delta A_{560-575}$; Cyt aa_3 , $\Delta A_{605-575}$; Cyt aa_3 , $\Delta A_{605-630}$.

ATPase activity: Determined as in Refs 13 and 15 using the deoxycholate-solubilized preparations. 1 µM CCCP present.

•	(a) Mitochondria	(b) SMP	b/a
$FE\Delta F$ (mg protein ⁻¹)	1032 ± 34 (3)	1960 ± 25 (3)	1.90
Cyt. b , $\Delta A_{560-575}$ mg protein ⁻¹)	0.0135 ± 0.001 (3)	0.0265 ± 0.001 (3)	1.96
Cyt aa_3 , $\Delta A_{605-575}$ (mg protein ⁻¹)	0.0106 ± 0.001 (3)	0.0204 ± 0.001 (3)	1.92
$\Delta A_{605-630}$ (mg protein ⁻¹)	0.0106 ± 0.001 (3)	0.023 ± 0.001 (3)	2.16
ATPase, nmol min ⁻¹ mg protein ⁻¹)	$405 \pm 25 (3)$	$903 \pm 35 (3)$	2.23

Table 2 Purification of F₀ from rat liver mitochondria

Membranes and fractions were prepared as described by McEnery et al. 18 and summarized below.

Fraction 1 (inner membrane vesicles) was prepared from rat liver mitochondria by use of digitonin.

Fraction 2 ($3 \times$ membranes) was prepared from Fraction 1 by washing three times with an extraction buffer to remove peripheral proteins from the inner membrane; 30-40% of the total protein is extracted.

Fraction 3 (3×G membrane) was prepared from Fraction 2 by washing three times with buffered guanidine solution which extracts F_1 -ATPase and other tightly bound peripheral proteins.

Fraction 4 (3×G extract) is the guanidine-extracted F_1 -ATPase and other peripheral proteins.

Fraction 5 (CHAPS extract) was obtained by extraction of Fraction 3 with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio-1-propanesulphonate (CHAPS)]. The CHAPS extract is the pure preparation of F_0 described by McEnery *et al.*¹⁸ The F_0 preparation showed a similar gel electrophoresis pattern to that described by McEnery *et al.*¹⁸

Each fraction was assayed under standard conditions to determine FE ΔF (mg protein⁻¹). Protein is dispersed in HSE buffer, pH 7.4, 2 μ l 10 mm-Bu₂SnBr(of) added and fluorescence enhancement, FE ΔF (excitation 395 nm; emission 450 nm) determined. Total volume 2.0 cm³.

Fraction	Protein in assay (µg)	FEΔF (mg protein ⁻¹)	Purification	
1. Inner membrane vesicles	300	1740	1	(1)
2. 3 × membranes	ND^a	ND	ND	(1.4)
3. 3×G membrane	40	6450	3.7	(3.2)
4. 3×G extract	90	0	0	ò
5. F ₀ (CHAPS extract)	30	16 700	9.5	(10.4)

^a ND, not determined. Values in parentheses are estimated from Table 1 in Ref. 18.

fluorescence probe studies which show that Bu₃SnCl displaces Bu₂SnBr(of) from a binding site which is probably a common binding site for R₃SnX compounds. Displacement is specific and other tin compounds (Bu₂SnBr₂, BuSnCl₃, Bu₃Sn-imidazole and Bu₃PbAc) do not displace Bu₂SnBr(of), indicating competition for a common triorganotin-binding site.

The fluorescence enhancement on binding indicates that a specific apolar binding site is involved and that it is correlated with the amount of cytochromes and number of cristae¹⁷ in mitochondria (Fig. 4). As this also correlates with the amount of F₁F₀-ATPase, Bu₂SnBr(of) can be used to titrate the F₀ segment in mitochondrial membranes. Specific displacement by Bu₃SnCl is a further parameter which can be used to define Bu₃SnCl binding in mitochondria. Detailed studies of these interactions by stopped-flow fluorimetry are necessary to evaluate binding constants and to evaluate the number of binding sites involved.

These properties can be used as a simple method to study organotin-sensitive sites in other F-ATPases, e.g. from $E.\ coli$, yeasts, mammalian mitochondria and plant mitochondria. Potential uses are in the titration of F_0 in yeast mitochondria from wild-type (rho^+) , petite (rho^-) and mit^- mutants. Other potential uses are in studies of mammalian mitochondrial mutations, 21 many of which are associated with human neuro-degenerative disease states.

The titration properties of Bu₂SnBr(of) can be applied to studies of the organotin-binding site in isolated F-ATPases (D. E. Griffiths, unpublished). The sensitivity to organotins is markedly modified in some isolated F-ATPases as compared with the membrane-bound enzyme complex. This may be due to loss of a component which binds Bu₃SnCl during the preparation of many types of F-ATPase complexes. This point has been addressed by Sanadi and co-workers²⁰ with respect to the presence or absence of Factor B and they infer that the majority of isolated F-ATPase preparations are not representative of the structure and function of ATP synthase. The

use of Bu₂SnBr(of) as a fluorescent probe of F-ATPases and ATP synthase preparations may thus provide an experimental system for the role of Factor B in oxidative phosphorylation.

Acknowledgements We wish to thank the Royal Society for their support via research awards to JU and a Developing Countries Research fellowship to JU. These studies were assisted by an equipment grant from the Parkinson's Disease Society.

REFERENCES

- 1. Aldridge, W N and Street, B W J. Biochem., 1964, 91: 287
- 2. Rose, M S and Aldridge, W N Biochem. J., 1972, 127: 51
- 3. Sone, N and Hagihara, B J. Biochem., 1964, 56: 151
- 4. Maguire, R J Water Poll. Res. J. Can., 1991, 26: 243
- World Health Organisation Tributyltin Compounds.
 United Nations Environment Programme, WHO Environmental Health Criteria No. 116, WHO, Geneva
- 6. Cain, K and Griffiths, D E Biochem. J., 1977, 162: 575
- 7. Yagi, T and Hatefi, Y Biochemistry, 1984, 23: 2449
- Cain, K, Partis, M D and Griffiths, D E Biochem. J., 1977, 161: 593
- 9. Usta, J and Griffiths, D E Biochem. Biophys. Res. Comm. 1992, 188: 365
- Blunden, S J and Smith P J J. Organomet. Chem., 1982, 226: 157
- 11. Heinonen, J K and Lahti, R J Anal. Biochem., 1981, 113: 313
- 12. Mewes, H W and Rafael, J FEBS Lett., 1981, 131: 7
- 13. Connerton, I F and Griffiths, D E Appl. Organomet. Chem., 1987, 3: 545
- 14. Beechey, R B, Hubbard, S A, Linnett, P A, Mitchell, A D and Munn, E A Biochem. J. 1975, 148: 533
- Emanuel, E L, Carver, M A, Solaini, G C and Griffiths,
 D E Biochim. Biophys. Acta, 1984, 766: 209
- Linnett, P E and Beechey, R B In: Methods in Enzymology, Fleischer S and Packer, L (eds), vol LV, Academic Press, New York, 1979, pp 472-518
- Lehninger, A L The Mitochondrion, W A Benjamin, New York, 1964, pp 17-35
- McEnery, M W, Hullihen, J and Pedersen, P L J. Biol. Chem., 1989, 264: 12029
- Stiggall, D L, Galante, Y M and Hatefi, Y J. Biol. Chem., 1978, 253: 956
- Hughes, J, Joshi, S, Torok, K and Sanadi, D A J. Bioenerg. Biomembr., 1982, 14: 287
- 21. Wallace, D C Science, 1992, 256: 628