The F₁F₀-ATPase binding site of dibutyltin-3-hydroxyflavone: interactions with venturicidin, oligomycin and DCCD

David E Griffiths, Julnar Usta* and Ya Min Tian Department of Chemistry, University of Warwick, Coventry CV47AL, UK

Dibutyltin-3-hydroxyflavone bromide, Bu₂Sn(of), is a fluorescent probe inhibitor of mitochondrial F₁F₂ATPase which reacts with and titrates a component of Fo with marked fluorescence enhancement and reacts similarly with chloroplast CF₁CF₀ and V-ATPases. Its use to monitor the interactions of other Fa inhibitors (venturicidin, oligomycin, DCCD) with F₁F₀ATPase, both membrane-bound and purified by solubilization is described. Trialkyltins (Bu₂SnCl) back-titrate all Bu₂Sn(of) interaction sites; whereas the macrolide inhibitor venturicidin backtitrates 60 ± 5% and oligomycin only 30±3% of Bu₂Sn(of) interaction sites. Bafilomycin, the macrolide inhibitor V-ATPases, is inactive in this assay. DCCD acts in a different fashion from the other inhibitors. Current and potential applications of this fluorescent probe in mitochondrial bioenergetics and biogenesis are discussed.

Keywords: Dibutyltin-3-hydroxyflavone, fluorescence probe, F_1F_0ATP ase, tributyltin, venturicidin, oligomycin, DCCD, VEN^R - TET^R mutants

INTRODUCTION

Dibutyltin-3-hydroxyflavone bromide, $Bu_2Sn(of)$, is a fluorescent probe inhibitor of mitochondrial F_1F_0ATP ase which reacts with and titrates a component of F_0 with marked fluorescence enhancement. It reacts similarly with chloroplast $CF_1CF_0^3$ and with V-ATPases. The interaction site in mitochondria appears to be identical to the trialkyltin binding site on F_0 as trialkyltins (R_3SnX) appear to displace $Bu_2Sn(of)$ selectively with reversal of fluorescence

enhancement.^{1,2} This paper shows that it is also a novel fluorescent probe of F_0 which can be used for titration studies and to monitor the interactions of other F_0 inhibitors (venturicidin, oligomycin, dicyclohexylcarbodiimide (DCCD)) with F_1F_0ATP ase, both membrane-bound and solubilized, by simple fluorescence assays.

Previous work on F₀ inhibitor interaction has relied on studies of modification of the labelling of subunit c by ¹⁴C-DCCD, and kinetic studies are technically difficult. Effects on DCCD labelling of subunit c by oligomycin, venturicidin and dibutyl chloromethyltin (DBCT) have been reported,⁵ and similar studies have been published for DBCT⁶ and for venturicidin. ⁷ In contrast, equilibrium binding studies⁸ using radioactive triethyltin have shown that oligomycin and venturicidin do not affect high-affinity binding of triethyltin whereas this site is competed for by other trialkyltin compounds, thus providing support for biochemical genetic studies^{9,10} which have indicated that oligomycin, venturicidin and trialkyltins may have separate interaction sites.

In this paper it is shown that trialkyltins (R₃SnX) and venturicidin (VEN) interact rapidly and markedly with the Bu₂Sn(of) binding site at maximal and submaximal fluorophore concentrations. In addition, it is shown that both oligomycin and DCCD can modify the interaction of mitochondrial membranes with Bu₂Sn(of) under appropriate preincubation conditions and fluorophore concentrations, but appear to act in different fashions.

These effects are observed in mitochondria and submitochondrial particles and also in solubilized F_1F_0ATP ase preparations with varying degrees of effectiveness. The results are discussed in terms of (a) venturicidin—trialkyltin binding-site interactions previously inferred from studies of yeast VEN^RTET^R mutants; (b) potential applications in studies of the composition and mechanism of F_1F_0ATP ase, ATPase F_0 mutants and F_1F_0ATP ase biogenesis.

^{*} Permanent address: Department of Biochemistry, School of Medicine, AUB Beirut, Lebanon.

D E GRIFFITHS ET AL.

MATERIALS AND METHODS

The preparation of heart mitochondria (BHM), submitochondrial particles (SMP), the sources of reagents and protein estimation were described previously.^{1,2} Bafilomycin A₁ was obtained from Dr K Altendorf, University of Osnabrück. BHM and SMP were suspended in 50 mm Hepes, 0.25 m sucrose, 0.5 mm EGTA, pH 7.4, (HSE buffer) and stored frozen at -30 °C. Additional details are given in the legends to figures.

Dibutyltin-3-hydroxyflavone bromide, Bu₂Sn(of), was prepared as described previously² and stored in the dark as a 5mm ethanolic solution. Dilutions were made in ethanol prior to use and protected from light. The conditions for studies fluorescence were as described previously.^{1,2} Bu₂Sn(of) and inhibitors were added as ethanolic solutions and control experiments showed that ethanol ($\leq 0.5\%$, v/v) had no effect on the assay. All experiments were at room temperature (18–20 °C). FE ΔF . mg protein⁻¹ values, an index of Bu₂Sn(of) binding site content, were determined as in Ref. 2, using excess Bu₂Sn(of).

ATPsynthase was prepared as described by Sanadi and co-workers¹² by extraction with lysolecithin. The preparation was used prior to the sucrose-gradient purification step and had an $FE\Delta F$. mg protein⁻¹ value of 8600. Complex V from beef heart mitochondria¹³ was a gift from Dr Youssef Hatefi and was the ammonium sulphate precipitate prior to the final chromatography step. This preparation was assumed to be 60% pure, based on the data in Ref. 13 and had an $\overline{\text{FE}}\Delta F$, mg protein⁻¹ value of 4200. A highly purified sample of F₁F₀ATPase obtained from Dr J. E. Walker had an FE ΔF . mg protein⁻¹ value of 5850. Under our experimental and instrumental conditions, BHM and SMP have $FE\Delta F$. mg protein⁻¹ values of $1100 \pm 15\%$ and $2000 \pm 10\%$, respectively.² Thus, purified F₁F₀ATPases, which are 5-6-fold purified over SMP, should have FE ΔF . mg protein⁻¹ values of 10 000–12 000. There is a variable loss of Bu₂Sn(of) binding sites during preparative procedures for F₁F₀ATPase (D.E. Griffiths, unpublished work).

RESULTS

In previous studies² with liver and heart mitochondria using supramaximal levels of the fluorophore, 3-5 µM Bu₂Sn(of) was back-titrated by equimolar trialkyltins and triaryltins whose ATPase I_{50} values were similar to Bu₂Sn(of), and titration was markedly enhanced by preincubation. In subsequent studies, venturicidin also showed a marked effect and the maximal backtitration with venturicidin at high fluorophore concentrations was approximately 50-60% of that observed with trialkyltins (data not shown). In contrast, at these excessively high fluorophore levels, oligomycin and DCCD had no effect.

Further investigation showed that the effects of other F_0 inhibitors, especially oligomycin and DCCD, were dependent on fluorophore concentration, were readily observable at submaximal fluorophore concentrations $(0.25-1 \,\mu\text{M})$ and could be enhanced by preincubation.

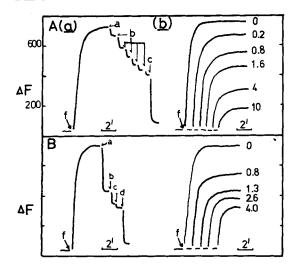

Titration studies with R₃SnX₁ venturicidin and oligomycin

Figure 1 shows (a) back-titration and (b) preincubation/titration experiments with $0.32 \, \text{mg}$ beef heart mitochondria at $0.5 \, \mu \text{M}$ Bu₂Sn(of), which gave 85-90% of maximal fluorescence enhancement. Figure 1A(a) shows a typical back-titration by tributyltin (Bu₃SnX), which restores the fluorescence to close to baseline levels (~100% back titration). Venturicidin (4 nmol) also readily back-titrates the Bu₂Sn(of) fluorescence enhancement to $60\pm5\%$ of the level obtained with excess Bu₃SnX [Figure 1B(a)], the remainder being titratable by Bu₃SnX. Significant effects are observed at $0.13 \, \text{nmol}$ venturicidin, indicating again a high affinity for the Bu₂Sn(of) site.

Oligomycin shows slower small-scale changes in back-titration experiments [Fig. 1C(a)] and is slightly less effective than venturicidin, although it appears to be as effective as venturicidin in preincubation/titration experiments (Fig. 1C(b)]. The final changes at high oligomycin concentrations with BHM are less than 40% of the changes seen with venturicidin, although they can be as high as 50%. Detailed titration studies of R₃SnX, venturicidin and oligomycin interactions can thus provide information on the relative binding affinities of these F₀ inhibitors in different types of F₁F₀ATPase preparations.

Titration studies with DCCD

In Fig. 1D(a), addition of DCCD leads to a low but continuous decline in fluorescence which is dependent on DCCD concentration. The fluores-

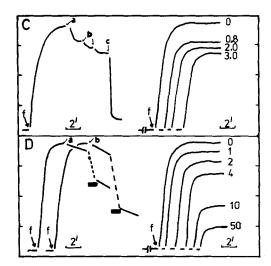


Figure 1. Effects of venturicidin, oligomycin, DCCD and tributyltin acetate on $Bu_2Sn(of)$ interaction with mitochondria. BHM (0.32 mg) in HSE buffer, pH 7.4, and $Bu_2Sn(of)$ were added (1 μ l of a 1 mm solution). ΔF values (arbitrary units) were estimated in a Perkin–Elmer spectrofluorimeter: excitation, 400 nm; emission, 450 nm. total volume 2.0 cm³. Temp. 18–20 °C. (a) The other F_0 inhibitors were added after maximum fluorescence enhancement was attained (back-titration). (b) The other F_0 inhibitors were preincubated with F_1F_0ATP ase for the indicated times at room temperature before addition of $Bu_2Sn(of)$, (pre-incubation–titration). The initial blank values have been adjusted and are one-half the true experimental values.

Experiment A: Tributyltin acetate (Bu₃SnAc). (a) Additions: f, 1 µl of 1 mm Bu₂Sn(of); a, 1 nmol Bu₃SnAc; b, 2,2,2,2,2 nmol Bu₃SnAc; 10 nmol Bu₃SnAc. (b) Preincubated for 2 min with indicated amounts (nmol) of Bu₃SnAc before addition of Bu₂Sn(of), 1 nmol.

Experiment B: Venturicidin. (a) Additions: a, b, c, 2,1,1 nmol venturicidin; d, 10 nmol Bu₃SnCl. (b) Preincubated for 2 min with indicated amounts (nmol) of venturicidin.

Experiment C: Oligomycin. (a) Additions: a, b, c, 1,2,2 nmol oligomycin. (b) Preincubated for 10 min with indicated amounts (nmol) of oligomycin.

Experiment D: DCCD. (a) Additions: a, 5 nmol DCCD; b, 10 nmol DCCD. (b) Preincubation for 10 min with indicated amounts (nmol) of DCCD. Filled blocks indicate 30 min time span.

cence eventually decreases to ~30% of the maximal. This value is similar to that obtained with venturicidin, and the remaining fluorescence is back-titratable by tributyltin. Preincubation with DCCD enhances its activity as a modifier of Bu₂Sn(of) binding (Fig. 1D(b)]. It markedly affects Bu₂Sn(of) binding at low levels (1–4 nmol) which are known to inhibit ATPase and oxidative phosphorylation by reaction with Glu-61 on subunit c. DCCD preincubation [Fig. 1D(b)], can modify Bu₂Sn(of) interaction by up to 85% of the maximal effect obtained with trialkyltins.

It should be noted that, in back-titration experiments, the effects of DCCD indicate a continuous modification (or destruction) of the Bu₂Sn(of) site [Fig. 1D(a)], whereas preincubation with DCCD leads to a stable modification of the Bu₂Sn(of) site.

Titration studies with SMP and solubilized F₁F₀ATPases

Back-titration experiments with SMP (Fig. 2) show qualitatively similar effects to those seen in BHM, although minor changes in trialkyltin back-titration and venturicidin back-titration have been observed. DCCD is equally effective in modifying the Bu₂Sn(of) interaction site in SMP. This finding excludes the possibility that the DCCD effects observed with mitochondria are due to reduced uptake of Bu₂Sn(of) by inhibition of mitochondrial porin.

The interactions of F₀ inhibitors with the Bu₂Sn(of) binding site observed in mitochondria and SMP are also observed in solubilized ATPsynthase¹² and solubilized F₁F₀ATPase, Complex V¹³ and a highly purified F₁F₀ATPase.

404 D E GRIFFITHS ET AL.

Figure 3 shows similar fluorescence enhancement and back-titration studies with partially purified preparations of Complex V13 and a highly purified F₁F₀ATPase. The same general features as seen in mitochondria—total back-titration by trialkyltins, partial back-titration by the macrolide inhibitors venturicidin and oligomycin, and modification by DCCD—are retained to varying degrees in various types of solubilized F₁F₀ATPase preparations. This is a finding of particular significance for future studies of fractionation and reconstruction of the F₁F₀ ATPase complex. It should be noted that the response to oligomycin is lower in many solubilized preparations whereas the response to venturicidin is largely retained. This may be due to loss of lipid or a structural rearrangement during the isolation process. Bu₂Sn(of) interactions and F₀ inhibitor interactions in solubilized preparations are faster than in BHM and SMP due to the lack of a membrane permeability barrier or membrane partition barrier.

DISCUSSION

These studies indicate that Bu₂Sn(of) is a versatile fluorescent probe of the F₁F₀ATPase complex, both in the membrane-bound and solubilized form. Figures 1-3 indicate some of the

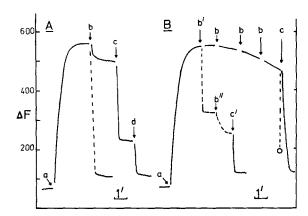


Figure 2. Effect of F_0 inhibitors on $Bu_2Sn(of)$ interaction with SMP (0.25 mg). Experimental conditions as in Fig. 1.

Experiment A: Additions: a, 1 nmol Bu₂Sn(of); b, 1 nmol oligomycin; c, 4 nmol venturicidin; d, 10 nmol Bu₃SnCl.

Experiment B: Additions: a, 1 nmol $Bu_2Sn(of)$; b, 5 nmol DCCD; c, 10 nmol Bu_3SnCl ; b', 2 nmol venturicidin; b'', 4 nmol oligomycin; c', 10 nmol Bu_3SnCl . DCCD trace after 30 min, --- \circ .

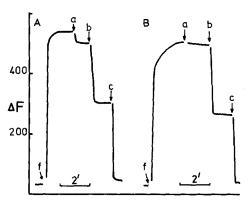


Figure 3 Effect of F_0 inhibitors on F_1F_0ATP as preparations. Experimental conditions as in Fig. 1.

Experiment A: 125 μg Complex V. Additions: f, 1 nmol Bu₂Sn(of); a, 2 nmol oligomycin; b, 4 nmol venturicidin; c, 10 nmol Bu₃SnCl.

Experiment B: 75 μ g purified F_1F_0ATP ase. Additions: as in

DCCD (5 nmol) caused a continuous decline in fluorescence in both types of preparation similar to that observed in Fig. 2B (data not shown).

experiments that are now possible using this reagent for titration studies and studies of interaction with other F_0 inhibitors. These experiments, utilizing submaximal levels of fluorophore (2× and 4× I_{50} values) show that:

- (a) The binding sites of Bu₂Sn(of) present in BHM and SMP are also present in solubilized and highly purified F₁F₀ATPases, albeit in reduced concentration.
- (b) The binding sites for Bu₂Sn(of) are backtitrated by Bu₃SnX and other R₃SnX compounds. Thus, simple displacement of Bu₂Sn(of) by R₃SnX in competition for a common binding site is a possible explanation for the effects of Bu₃SnX in Fig. 1A(a) and this conclusion is supported by preincubation experiments [Fig. 1A(b)], as reported previously.²

R₃SnX compounds such as Bu₃SnX titrate all the Bu₂Sn(of) sites in mitochondrial membranes and solubilized F₁F₀ATPases. This suggests that the Bu₂Sn(of) interaction sites may be identical molecular species or related species of similar chemical reactivity which are present in the inner mitochondrial membrane.

(c) The binding site for Bu₂Sn(of) is readily back-titrated by venturicidin, a macrolide antibiotic, in all types of F₁F₀ATPase preparation (Fig. 1B), and at low and high levels

- of fluorophore. A maximal back-titration of $60\pm5\%$ by venturicidin is observed in membrane preparations and to lesser extents in solubilized F_1F_0 preparations. The results (Fig. 1B and Fig. 2) indicate that venturicidin has a high affinity for the $Bu_2Sn(of)$ binding site and that it reacts rapidly with this site.
- (d) In contrast, the other macrolide inhibitor. oligomycin, shows little or no effect on Bu₂Sn(of) binding at high fluorophore concentrations.2 However, at low fluorophore concentrations, low levels of oligomycin elicit a response in back-titration studies and a slightly increased response on preincubation (Fig. 1C). These effects are the result of slow interactions and finally amount to less than 30% of the effects observed with trialkyltins and less than 50% of the effects observed with venturicidin. Thus oligomycin may act at a different interaction site from venturicidin or by a different reaction mechanism. Similar studies of other macrolide inhibitors F_1F_0ATP ase (botrycidin, peliomycin, ossamycin, venturicidin aglycone) are now feasible. Bafilomycin, the macrolide inhibitor of V-ATPases, was shown to be completely inactive when tested with BHM at levels up to 7.5 nmol mg protein⁻¹.

Figures 1-3 show that up to 35% of the Bu₂Sn(of) interaction sites are not back-titratable by venturicidin but are still titratable by Bu₃SnX compounds. Also, the effects of maximal oligomycin followed by maximal venturicidin (Fig. 2), or vice versa, are not additive, as only total of about 65% of the Bu₂Sn(of) sites are titrated by the macrolide inhibitors. A facile explanation of these results is that there are two classes of Bu₂Sn(of) sites; one 'free' and representing up to 35% of the total, and the other 'bound' to ATPsynthase and modifiable by the macrolide inhibitors, particularly venturicidin, which acts with high affinity at the same site, and by oligomycin, which acts with slightly lower affinity at a different but related site.

A common interaction site of venturicidin and trialkyltins, separate from the oligomycin binding site in F_0 , has been inferred from previous studies in this laboratory on yeast venturicidin-resistant and yeast triethyltin-resistant mutants, the large majority of which are cross-resistant (VENRTETR). This class of mutants is not iso-

genic with other mitochondrial genes¹¹ and thus cannot involve modifications of subunit c (DCCD binding protein). This differentiates the VENRTETR interaction site from mitochondrially coded VENR and VENROLIR mutants which are modified in subunit c^{10, 14} and mitochondrially coded OLIR mutants which are modified in subunit c and/or subunit b. $^{9, 10, 15}$ Studies of mitochondria from these four classes of mutants using Bu₂Sn(of) as a fluorescence probe can give useful information on the relationship between venturicidin, oligomycin and R₃SnX binding sites on F₁F₀ATPase.

The titration of Bu₂Sn(of) interaction sites in mitochondria, SMP and various purified F₁F₀ATPase complexes is a further facility of this reagent which allows studies of the distribution of Bu₂Sn(of) interaction sites during fractionation and purification of the complexes of the mitochondrial inner membrane (D. E. Griffiths, unpublished observations). Studies are under way to establish the identity, location and distribution of Bu₂Sn(of) interaction sites in the mitochondrial inner membrane and to establish whether they have a specific and unique association with the F₁F₀ATPase complex.

Acknowledgements We thank The Royal Society for a Developing Countries Research Fellowship to JU. This work was greatly facilitated by gifts of Complex V from Dr Y. Hatefi, highly purified F₁F₀ATPase from Dr J. E. Walker and Bafilomycin A₁ from Dr D K Apps.

REFERENCES

- Usta, J and Griffiths, D E Biochem. Biophys. Res. Comm., 1992, 188: 365
- Usta, J and Griffiths, D E Appl. Organomet. Chem., 1993, 7: 193
- 3. Minkov, I, Griffiths, D E and Strotmann, H unpublished studies
- Webster, L, Griffiths, D E and Apps, D K Biochem. Soc. Trans., 1993, 21: (in press)
- 5. Kiehl, R and Hatefi, Y Biochemistry, 1980 19: 541
- Partis, M D, Bertoli, E, Griffiths, D E and Azzi, A Biochem. Biophys. Res. Commun., 1980, 96: 1103
- Ruder, F J and Kayser, H Pesticide Biochem. Physiol., 1992, 42: 248
- 8. Cain, K and Griffiths, D E Biochem. J., 1977, 162: 593
- 9. Griffiths, D E, Houghton, R L, Lancashire, W E and Meadows, P A Eur. J. Biochem., 1975, 51: 393
- Lancashire, W E and Griffiths, D E Eur. J. Biochem., 1975, 51: 403

D E GRIFFITHS ET AL.

 Lancashire, W E and Griffiths, D E Eur. J. Biochem., 1975, 51: 377

- 12. Hughes, J, Joshi, S, Torok, K and Sanadi, D A J. Bioenerg. Biomembr., 1982, 14: 287
- 13. Stiggall, D L, Galante, Y M and Hatefi, Y J. Biol. Chem.,

1978, 264: 12029

- Galanis, M, Mattoon, J R and Nagley, P FEBS Lett., 1989, 249: 333
- 15. Ray, M K, Connerton, I F and Griffiths, D E Biochim. Biophys. Acta, 1988, 951: 213