A Study of Trialkyltin β -Aryl- β -triphenylgermyl Propionates

Xie Qing-Lan, Sun Li-Juan, Liu Hua, Wang Ru-Ji and Wang Hong-Gen National Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China

Twenty new compounds the form Ph₃GeCHArCH₂COOSnR₃ (R=n-Bu, cyclohexyl; Ar = substituted phenyl) have been synthesized. Their structures were characterized by IR and ¹¹⁹Sn and ¹H NMR spectroscopy. The compounds are five-coordinated carboxylate bridged polymers when R = n - Bu; when R = cyclohexyl (Cy) they are four-coordinate. 119Sn NMR measurements of chemical shift for the two series of compounds have shown that there is a good linear relationship for the chemical shift of 119Sn NMR between the tributyltin and tricyclohexyltin propionates), viz. δ^{119} Sn(Bu₃Sn) = 1.0474 δ^{119} Sn(Cy₃Sn) + 95.8076, n=5, r=0.993. The structure of one compound was determined by X-ray diffraction. It exists as a monomeric four-coordinated species in a distorted tetrahedronal geometry.

Keywords: Trialkyltin, triphenylgermanium propionates, synthesis, structure

INTRODUCTION

Japanese workers have synthesized compounds of the form R_3^3 GeCHR¹CHR²C(O)Z, (R', R², R³ = alkyl, aryl; Z=OR, NHR) which can selectively inhibit the decomposition of enzymes; for example, they are effective opiate peptidase inhibitors at 1 mg cm⁻³. We have synthesized some analogues, viz. Ar₃GeCHR¹CHR²COOH (Ar = aryl, thiophene; R¹ = aryl, H; R² = CH₃, H) and characterized

Table 1 The yields and elemental analyses of the compounds

				Elemental analysis: Found (calcd) (%)			
Compound	Yield (%)	State	M.pt (°C)	C	Н	Formula for calculation	
I ₁	76.6	White crystals	128-129	65.92 (65.90)	6.44 (6.88)	C ₄₅ H ₅₆ O ₂ GeSn	
I_2	82.5	White crystals	155-156	65.86 (66.23)	6.85 (7.01)	C ₄₈ H ₅₈ O ₂ GeSn	
I ₃	60	White crystals	136-138	62.94 (63.24)	6.38 (6.49)	C45H55O2ClGeSn	
I ₄	70	White crystals	138-140	66.94 (67.14)	6.61 (6.63)	$C_{51}H_{50}O_3GeSn$	
I ₅	81	White crystals	84-86	65.36 (64.98)	6.71 (6.88)	C46H58O3GeSn	
I ₆	86.9	White crystals	110-112	64.76 (64.98)	6.57 (6.88)	C46H58O3GeSn	
I ₇	78.2	White crystals	138-139	63.05 (63.24)	6.11 (6.49)	C45H55O2ClGeSn	
I ₈	86.6	White crystals	118-119	64.31 (64.48)	6.55 (6.61)	C ₄₅ H ₅₅ O ₂ FGeSn	
I.	96.6	White crystals	156-157	66.09 (66.23)	7.01 (7.01)	C45H58O2GeSn	
I ₁₀	86.9	White crystals	126-127	66.18 (66.23)	7.21 (7.01)	C46H58O2GeSn	
II,	48.1	White crystals	90-92	62.76 (63.12)	6.66 (6.79)	C ₃₀ H ₅₀ O ₃ GeSn	
II ₂	66	White crystals	82-85	63.12 (63.54)	6.72 (6.93)	C40H52O2GeSn	
113	72	White crystals	73-76	60.38 (60.32)	6.52 (6.36)	C ₃₉ H ₄₉ O ₂ ClGeSn	
II4	80	White crystals	102-103	64.67 (64.79)	6.50 (6.52)	$C_{45}H_{54}O_3GeSn$	
II,	72	White crystals	76-78	61.85 (62.22)	6.67 (6.79)	C40H52O3GeSn	
II,	69.2	White crystals	101-103	61.80 (62.22)	6.48 (6.79)	C40H52O3GeSn	
II ₇	74.3	White crystals	87-90	60.30 (60.32)	6.28 (6.36)	C ₃₉ H ₄₉ O ₂ ClGeSn	
118	78.9	White crystals	96-97	61.19 (61.53)	6.54 (6.50)	C ₃₉ H ₄₉ O ₂ FGeSn	
II,	66.2	White crystals	85-86	63.44 (63.54)	6.90 (6.93)	C ₄₀ H ₅₂ O ₂ GeSn	
1110	75.6	White crystals	9091	63.21 (63.54)	6.54 (6.93)	C ₄₀ H ₅₂ O ₂ GeSn	

Table 2 IR data of carbonyl groups of Ph₃GeCHArCH₂COO-SnR₃ (cm⁻¹)^a

Compound	$ u^{ m asym}$	$ u^{ m sym}$	$\Delta \nu$
I,	1637	1330	307
12	1633	1322	311
I ₃	1633	1315	318
$\mathbf{l_4}$	1634	1317	317
I ₅	1631	1320	311
I ₆	1642	1323	319
I ₇	1646	1312	334
18	1639	1310	329
I,	1625	1318	307
I ₁₀	1629	1310	319
II ₁	1548	1380	168
	(1625)	(1331)	(294)
112	1545	1386	159
	(1625)	(1320)	(305)
113	1549	1372	177
	(1626)	(1317)	(309)
II ₄	1550	1374	176
II,	1548	1378	170
	(1619)	(1315)	(304)
II₀	1545	1369	176
II ₇	1553	1386	167
118	1557	1376	181
	(1630)	(1315)	(315)
II,	1548	1386	162
II ₁₀	1538	1369	170

^a Data in solvent CHCl₃ are in parentheses.

them by IR and ¹H NMR.² It is known that trialkyltin derivatives are generally biologically active. For example, we have reported the preparation and biocidal properties of tributyltin and tricyclohexyltin carboxylates.^{3,4} In order to link biological active properties of organotin and organogermanium compounds, we have synthesized

two series of compounds containing tin and germanium by the following reaction (Eqn 1).

$$\rightarrow$$
 Ph₃GeCHArCH₂COOSnR₃ + KCl [1]

For compounds I, R = cyclohexyl(Cy), and Ar is:

$$C_6H_5$$
 (I_1); p -CH₃CH₆H₄ (I_2); p -ClC₆H₄ (I_3); m -PhOC₆H₄ (I_4); p -CH₃OC₆H₄ (I_5); o -CH₃OC₆H₄ (I_6); o -ClC₆H₄ (I_7); p -FC₆H₄ (I_8); o -CH₃C₆H₄ (I_9); m -CH₃C₆H₄ (I_{10}).

For compounds II, R = Bu and Ar is:

$$C_6H_6$$
 (II₁); p -CH₃ C_6H_4 (II₂); p -ClC₈ H_4 (II₃); m -PhOC₆ H_4 (II₄); p -CH₃OC₆ H_4 (II₅); o -CH₃OC₆ H_4 (II₆); o -ClC₆ H_4 (II₇); p -FC₆ H_4 (II₃); o -CH₃C₆ H_4 (II₉); m -CH₃C₆ H_4 (II₁₀).

The structures of these compounds were characterized by IR and ¹¹⁹Sn and ¹H NMR spectroscopy and by X-ray determination.

EXPERIMENTAL

IR spectra were recorded on a Shimadzu IR-435 spectrometer in KBr discs. The ¹H and ¹¹⁹Sn NMR spectra were measured on a JEOL-FX-90Q spectrometer or a Bruker Ac-200 spectrometer in CDCl₃ solution with TMS as internal and Me₄Sn as external standard.

Elemental analyses were determined on an MT-3 elemental analyzer. Mass spectra were recorded on an HP-5988A at 70 eV; the temperature of ionization was 200 °C.

Table 3 Main NMR (1H, 119Sn) data for compounds Ph₃GeCHArCH₂COOSnCy₃ (ppm)

		δ'H						
Com- pound	δ ¹¹⁹ Sn	C ₆ H ₁₁	CH ₂	СН	Ar	Ph		
I ₁	11.8748	0.96-2.04 (33H, m)	2.98 (2H, d)	3.70 (H, t)	6.8-7.2 (5H, m)	7.32 (15H, s)		
I,	11.3188	0.96-2.04 (33H, m)	2.96 (2H, d)	3.68 (H, t)	6.86 (4H, s), 2.24 (3H, s)	7.36 (15H, s)		
I ₃	14.3938	0.96-2.04 (33H, m)	2.96 (2H, d)	3.67 (H, t)	6.96 (4H, m)	7.36 (15H, s)		
I ₄	12.8890	0.96-2.04 (33H, m)	2.90 (2H, d)	3.68 (H, t)	6.56-7.2 (9H, m)	7.36 (15H, s)		
15	11.3842	1.00-2.08 (33H, m)	2.96 (2H, d)	3.74 (H, t)	6.52-7.0 (4H, m), 3.74 (3H, s)	7.38 (15H, s)		
I ₆	9.5522	1.00-2.04 (33H, m)	2.88-3.08 (2H, dq)	4.20 (H, q)	6.4-7.08, (4H, m), 3.24 (3H, s)	7.36 (15H, s)		
1,	14.3938	0.96-2.04 (33H, m)	2.96 (2H, dq)	4.38 (H, q)	6.92-7.2 (4H, m)	7.36 (15H, s)		
I ₈	13.0853	0.92-2.04 (33H, m)	2.96 (2H, d)	3.70 (H, t)	6.64-7.0 (4H, m)	7.38 (15H, s)		
I,	10.9262	0.88-2.04 (33H, m)	2.98 (2H, dq)	3.96 (H, q)	6.7-7.1 (4H, m), 1.98 (3H, s)	7.32 (15H, s)		
I 10	11.1879	0.96-2.04 (33H, m)	2.96 (2H, d)	3.68 (H, t)	6.60-7.04 (4H, m), 2.12 (3H, s)	7.36 (15H, s)		

Table 4 Main NMR (¹H,¹¹¹Sn) data for compounds Ph₃GeCHArCH₂COOSn(CH₂)₃CH₃ (ppm)

		H_1Q					
Compound	υSυιδ	CH,	(CH ₂),	СН2	СН	Ar	Ph
Ш,	108.3133	0.82 (9H, t)	0.92-1.6 (18H, m)	2.96 (2H, d)	3.70 (H, t)	6.8–7.18 (5H, m)	7.32 (15H, s)
11,	107.4955		0.96-1.6 (18H, m)	2.92 (2H, d)	3.68 (H, t)	6.86 (4H, s), 1.24 (3H, s)	7.34 (15H, s)
II,	110.7341		0.96-1.80 (18H, m)	2.92 (2H, d)	3.67 (H, t)	6.96 (4H, m)	7.36 (15H, s)
֓֞֞֞֜֞֜֞֞֜֞֜֞֜֞֞֜֜֞֜֞֜֜֞֓֓֓֞֜֜֜֜֜֟	109.1638			2.90 (2H, d)	3.70 (3H, t)	6.60-7.2 (9H, m)	7.38 (15H, s)
II,	107.6425		0.62-1.96 (27H, m)	2.94 (2H, d)	3.76 (H, t)	6.8 (4H, m), 3.76 (3H, s)	7.38 (15H, s)
ıı,	105.2056		1-1.68 (18H, m)	2.96 (2H, dq)	4.12 (H, q)	6.2–7.08 (4H, m), 3.22 (3H, s)	7.30 (15H, s)
II,	110.1452		0.84 (9H, t) 0.96-1.8 (18H, m)	2.92 (2H, dq)	4.34 (H, q)	6.8-7.2 (4H, m)	7.34 (15H, s)
11,	109.7527		0.84 (9H, t) 0.96-1.6 (18H, m)	2.92 (2H, d)	3.68 (H, t)	6.64-7.0 (4H, m)	7.36 (15H, s)
11,	107.2665		0.6-1.8 (27H, m)	2.96 (2H, dq)	3.92 (H, q)	6.64-7.08, (4H, m), 19.6 (3H, s)	7.30 (15H, s)
11,	107.4627		0.84 (9H, t) 0.96-1.8 (18H, m)	2.92 (2H, d)	3.64 (H. t)	6.42-7.08 (4H, m), 2.12 (3H, s)	7.34 (15H, s)

Q.-L. XIE ET AL.

Comp	oound I ₁		Compound II ₁			
m/z	Fragment ion	Intensity	m/z	Fragment ion	Intensity	
736	Ph ₃ GeCHC ₈ H ₅ CH ₂ COOSnCy ₂ ⁺	2.5	685	Ph ₃ GeCHC ₆ H ₅ CH ₂ COOSnBu ₂ ⁺	5.6	
434	C ₆ H ₅ CHCH ₂ COOSnCy ₂ ⁺	6.8	305	Ph ₃ Ge ⁺	78	
305	Ph ₃ Ge ⁺	71	197	C ₆ H ₅ Sn ⁺	28	
227	PhGe	31	177	BuSn ⁺	1:00	
203	CySn ⁺	57	151	PhGe ⁺	65	
197	C ₆ H ₅ Sn ⁺	45	121	SnH ⁺	79	
151	PhGe ⁺	48	41	C_3H_5	31	

60

85

100

Table 5 Fragment ions observed for compounds I1 and II1

The β -substituted phenyl- β -triphenylgermyl-propionic acids were synthesized via the following reaction (Eqn [2]).

GeO₂ + NaH₂PO₂. H₂O + HCl
$$\rightarrow$$
 [HGeCl₃]

ArCH=CHCOOH Cl₃GeCHArCH₂CO₂H₅

(i) PhMgCl \rightarrow Ph₃GeCHArCH₂CO₂H [2]

Synthesis of products

120

83

55

 Sn^+

 $C_6H_{11}^+$

 $C_4H_7^+$

At the refluxing temperature of acetone, 10 mmol of the β -substituted phenyl- β -triphenylgermylpropionic acid and 5 mmol of K_2CO_3 were allowed to react for 10 min, then 10.5 mmol of the trialkyltin chloride was added. The mixture was stirred under reflux for 10 h. After removing the solvent,

Table 6 Bond distances and bond angles of compound Im

Bond distances (Å)		Bond angles (deg)			
Sn-O(1)	2.803(6)	O(2)-Sn-O(1)	50.8(3)		
Sn-O(2)	2.075(6)	O(2)-Sn-C(11)	108.3(3)		
Sn-C(11)	1.170(9)	O(2)-Sn-C(21)	111.3(3)		
Sn-C(21)	2.150(1)	O(2)-Sn-C(31)	95.4(3)		
Sn-C(31)	2.080(2)	O(11)-Sn-C(21)	113.7(3)		
Ge-C(1)	1.954(8)	C(11)-Sn- $C(31)$	115.9(4)		
Ge-C(41)	1.965(8)	C(21)-Sn-C(31)	110.8(4)		
Ge-C(51)	1.949(9)	C(1)-Ge- $C(4)$	109.9(3)		
Ge-C(6)	1.940(8)	C(1)-Ge- $C(51)$	108.71(4)		
O(1)-C(3)	1.190(1)	C(1)-Ge- $C(61)$	110.3(3)		
O(2)-C(3)	1.285(9)	C(41)-Ge- $C(51)$	110.6(4)		
		C(41)-Ge-C(161)	109.3(3)		
		C(51)-Ge-C(61)	108.1(3)		

the product was obtained after recrystallization from ethanol.

Some data on the products are listed in Table 1.

RESULTS AND DISCUSSION

There are two kinds of structures for trialkyltin carboxylates. These are the four-coordinate structures for the monomers (A) and the five-coordinate structures for polymers (B).

The vacant 5d orbital on tin atoms tend towards high-coordination ligands with strong electronegativity containing lone electron pairs. $^{3-6}$ The IR stretching vibration frequencies of carbonyl groups in organotin carboxylates are important for determining their structures: when the structure changes from A to B, the asymmetric absorption vibration frequencies ($\nu_{\text{CO}_2}^{\text{sym}}$) of carbonyl groups decrease and the symmetric absorption vibration frequencies ($\nu_{\text{CO}_2}^{\text{sym}}$) increase. Their difference ($\Delta\nu_{\text{CO}_2}$) therefore decreases. $^{3.5}$

We see from Table 2 that the frequency $\nu_{\text{CO}_2}^{\text{asym}}$ of the Ph₃GeCHArCH₂COOSnBu₃ species is about 77–79 cm⁻¹ lower than that of the corresponding tricyclohexyltin carboxylates, while $\nu_{\text{CO}_2}^{\text{sym}}$ is about 46–74 cm⁻¹ higher. For tributyltin carboxylates, the difference between $\nu_{\text{CO}_2}^{\text{asym}}$ and $\nu_{\text{SO}_2}^{\text{sym}}$ ($\Delta\nu_{\text{CO}_2}$) is

Table 7 Fractional coordinates and thermal parameters of non-hydrogen atoms for compound I_{10}

				Beq./B
Atom	<u>x</u>	у	<i>z</i>	(Å ²)
Sn	0.5618(1)	0.44664(8)	0.25955(9)	5.03(3)
Ge	0.4962(2)	-0.0575(1)	0.1983(1)	4.85(4)
O(1)	0.520(1)	0.2989(8)	0.1581(7)	5.7(3)
O(2)	0.589(1)	0.2866(8)	0.2833(7)	6.0(3)
C(1)	0.470(1)	0.094(1)	0.184(1)	4.7(3)
C(2)	0.569(1)	0.129(1)	0.236(1)	.5.3(4)
C(3)	0.556(1)	0.249(1)	0.220(1)	5.0(4)
C(11)	0.369(2)	0.508(1)	0.243(1)	5.5(4)
C(12)	0.338(2)	0.619(2)	0.257(1)	7.5(5)
C(13)	0.196(2)	0.667(2)	0.248(1)	8.5(6)
C(14)	0.122(2)	0.598(2)	0.308(2)	9.6(6)
C(15)	0.154(2)	0.485(2)	0.286(1)	8.4(6)
C(16)	0.291(2)	0.439(2)	0.300(1)	8.1(5)
C(21)	0.678(2)	0.488(1)	0.156(1)	5.7(4)
C(22)	0.784(2)	0.400(1)	0.132(1)	7.0(5)
C(23)	0.867(2)	0.445(2)	0.058(2)	9.1(6)
C(24)	0.796(2)	0.486(2)	-0.015(1)	8.6(6)
C(25)	0.688(2)	0.570(1)	0.006(1)	7.0(5)
C(26)	0.609(2)	0.530(1)	0.079(1)	7.1(5)
C(31)	0.625(2)	0.472(1)	0.372(1)	6.8(5)
C(32)	0.647(2)	0.584(2)	0.373(1)	8.2(5)
C(33)	0.711(2)	0.594(2)	0.451(2)	11.6(8)
C(34)	0.834(2)	0.527(2)	0.453(2)	9.9(7)
C(35)	0.824(2)	0.421(2)	0.455(2)	10.8(7)
C(36)	0.762(2)	0.397(2)	0.385(2)	11.1(7)
C(41)	0.469(1)	-0.103(1)	0.317(1)	4.8(3)
C(42)	0.556(2)	0.097(1)	0.373(1)	7.2(5)
C(43)	0.535(2)	-0.128(2)	0.459(1)	8.6(6)
C(44)	0.433(2)	-0.163(2)	0.487(1)	8.2(5)
C(45)	0.351(2)	0.174(2)	-0.435(1)	8.5(6)
C(46)	0.373(2)	-0.141(1)	0.346(1)	7.2(5)
C(51)	0.384(1)	-0.102(1)	0.131(1)	5.2(4)
C(52)	0.257(2)	-0.068(1)	0.142(1)	5.9(4)
C(53)	0.180(2)	-0.105(1)	0.093(1)	6.4(4)
C(54)	0.228(2)	-0.173(1)	0.035(1)	7.1(5)
C(55)	0.352(2)	-0.207(1)	0.023(1)	6.8(5)
C(56)	0.433(2)	-0.174(1)	0.070(1)	5.6(4)
C(61)	0.662(1)	-0.120(1)	0.160(1)	4.5(3)
C(62)	0.727(2)	-0.214(1)	0.199(1)	6.5(4)
C(63)	0.840(2)	-0.261(2)	0.167(1)	7.5(5)
C(64)	0.896(2)	-0.223(1)	0.098(1)	6.5(4)
C(65)	0.836(2)	-0.128(2)	0.057(1)	8.0(5)
C(66)	0.719(2)	-0.079(1)	0.088(1)	5.8(4)
C(71)	0.343(1)	0.146(1)	0.209(1)	5.0(4)
C(72)	0.304(2)	0.146(1)	0.292(1)	5.9(4)
	0.174(2)	0.197(2)	0.315(2)	8.7(6)
C(73) C(74)	0.174(2) 0.099(2)	0.137(2)	0.248(1)	8.3(6)
C(75)	0.099(2) $0.139(2)$	0.238(2)	0.170(1)	8.4(6)
			0.170(1)	
C(76)	0.268(2)	0.190(2)	0.144(1)	7.9(5) 10.6(7)
C(77)	0.132(2)	0.198(2)	` '	
Cl(1)	0.1658(9)	0.9320(8)	0.6136(7)	15.8(3)
Cl(2)	0.083(1)	1.0350(9)	0.7479(8)	18.5(4)
Cl(3)	-0.039(1)	1.054(1)	0.624(1)	23.4(5)
C	0.046(3)	0.976(2)	0.692(2)	13.2(9)

less than 200 cm⁻¹ and it is greater than 300 cm⁻¹ for the tricyclohexyltin carboxylates. This suggests that the structures of the tributyltin carbox-

ylates may be five-coordinate (B) and those of the tricyclohexyltin carboxylates may be fourcoordinate (A).

The IR data of some tributyltin carboxylates, in CHCl₃, are listed in Table 2. Comparing these with the pure compounds, we find that the asymmetric absorption vibration frequencies of the carbonyl groups are increased and the symmetric absorption vibration frequencies are decreased, so their differences are increased. This suggests that the tributyltin carboxylates have four-coordinate structures in solvent.

The NMR data are listed in Tables 3 and 4. The ¹H NMR data of the products show that along with a decrease of the electron density around hydrogens on C(1)and C(2)Ph₃GeCHArCH₂COOSnR₃, the chemical shift of ¹H moved to low field by about 0.10 ppm when the trialkyltin combined with acid to form an ester. C(1) is a chiral centre and C(2) is a prochiral centre, and the three hydrogens on C(1)and C(2) comprise an ABX system. With change of substitute position on Ar, the relationship between the three hydrogens on C(1) and C(2)also changes. With ortho substitution the characteristic ABX system is apparent. With meta and para substitution, the three hydrogens transform to the first-order spectra of an A₂X system.

A subtle structural change around the tin atom can be reflected in the chemical shifts in ¹¹⁹Sn NMR. The substituents on the aromatic group have an influence on δ ¹¹⁹Sn. Electron-with-drawing groups make the chemical shift of ¹¹⁹Sn move to a lower field. We have found that there is a linear relationship between δ ¹¹⁹Sn and the Hammett constants (σ) of the *para* substituent for the I and II senses of the corresponding compounds (Eqns [3] and [4]).

I:
$$\delta^{119}$$
Sn = 6.24 σ + 12.60, n = 5, r = 0.930 [3]

II:
$$\delta^{119}$$
Sn = 6.57 σ + 109.00, n = 5, r = 0.928 [4]

Comparing the relationship of the ¹¹⁹Sn NMR chemical shift between tributyltin and tri[(phenyl-dimethylsilyl)methylene]tin-substituted benzoates,⁴ we also found that there is a good linear relationship for the ¹¹⁹Sn NMR chemical shift between tributyltin and tricyclohexyltin propionates containing germanium (Eqn [5]).

$$\delta^{119}$$
Sn(Bu₃Sn) = 1.0474 δ^{119} Sn(Cy₃Sn)
+ 95.8076, $n = 5$, $r = 0.993$ [5]

62 Q.-L. XIE *ET AL*.

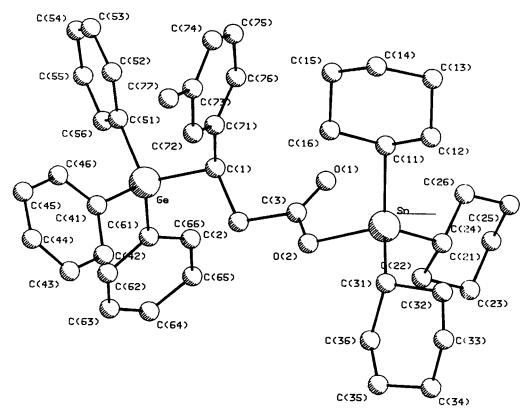


Figure 1 The molecular structure of Ph₃Ge(CH(C₆H₄CH₃—m)CH₂CO₂SnCy_a.

This shows that the two series of compounds have the same structure when they are dissolved in the solvent.

The mass spectra (MS) of compounds I_1 and II_2 were recorded and the main data are listed in Table 5. For both there are no molecular ion peaks. Dealkylation from the tin atom was the main breakdown pattern for the two compounds.

A crystal of Compound I_{10} was obtained from CHCl₃ solution and was determined using MoK α radiation ($\lambda = 0.71073$ Å) on an Enraf-Nonious CAD4 four-circle diffractometer. The crystallographic parameters and conditions of data collection are summarized as follows:

C48H58GeO5Sn·HCCl3

Crystal data: triclinic, space group $P\bar{1}$ with a=11.216(3), b=13.225(7), c=16.075(3) Å, $\alpha=84.36(3)$, $\beta=85.27(2)$, $\gamma=77.45^{\circ}(4)$, V=2312(2) A³, mol. wt 953.63, Z=2, density = 1.37 g cm⁻³, $\mu=13.86$ cm⁻¹, F(000)=980, scan type $\omega-2\theta$, $2^{\circ} \le \theta \le 22^{\circ}$, crystal size 0.2 mm $\times 0.3$ mm $\times 0.3$ mm, number of independent reflection 5783, number of observed reflection 3485 $[I \ge 3\sigma(I)]$.

The bond distances and angles are listed in Table 6. The fractional coordinates and thermal parameters of non-hydrogen atoms for I_{10} are listed in Table 7. The crystal structure of compound I_{10} can be reported as monomeric. The distances of two C-O bonds of the carboxyl group are 1.19 Å and 1.285 Å which are typical bond lengths for C=O and C-O groups, and the distance between tin and the carbonyl oxygen is 2.803 Å, which is longer than the sum of the van der Waals radii between tin and oxygen; therefore there is no coordinated bond. The compound is fourcoordinated monomeric in a distorted tetrahedral geometry (Fig. 1), although the bond angle of O(2)-Sn-C(31) (95.4°) deviates obviously from the standard tetrahedronal geometry.

REFERENCES

- N. Kakimoto, T. Katayama, M. Mori and T. Hasato, Japanese Patent 62 00092; Chem. Abstr. 106, 196, 614c.
- 2. L.-J. Sun, J.-J. Zhang and M.-Z. Bai, Acta Chim. Sinica

- 50, 288 (1992).
- Q.-L. Xie, M.-D. Wang, L. Chen and P.-W. Shen, Acta Chim. Sinica 46, 831 (1988).
- Q.-L. Xie, S.-Z. Li, S.-H. Zhang, D.-K. Zhang, Z.-G. Zhang and J.-M. Hu, Acta Chim. Sinica 49, 723 (1991).
- R.-J. Wang, H.-G. Wang, X.-K. Yao, Q.-L. Xie, M.-D. Wang and L. Chen, *Acta Chim. Sinica* 47, 209 (1989).
- Q.-L. Xie, X.-H. Xu, H.-G. Wang, X.-K. Yao, R.-J. Wang, Z.-G. Zhang and J.-M. Hu, Acta Chim. Sinica 49, 1085 (1991).