REVIEW

Critical Review of Analytical Methods for Determination of Inorganic Mercury and Methylmercury Compounds

Richard Puk and James H. Weber*

University of New Hampshire, Chemistry Department, Parsons Hall, Durham, NH 03824, USA

This review describes determinations of mercury compounds under three categories: total mercury; separate determinations of inorganic mercury(II) and organomercury compounds by selective reduction; and speciation of inorganic mercury(II), monomethylmercury cation, and dimethylmercury. Topics described for each category include sample treatment, separation, detection, and limit of detection. Finally, we note that most methods would not detect dimethylmercury if it were present.

Keywords: Analytical methods, mercury, monomethylmercury, dimethylmercury

NOTATION

AA	Atomic absorption
AF	Atomic fluorescence
APDC	Ammonium pyrrolidine dithiocar-
	bamate
Carbo trap	Graphitized carbon-black column
CC	Column chromatography
Conc	Concentrated
Cry-PC	Cryogenic packed column
CVAA	Cold vapor atomic absorption
CVAF	Cold vapor atomic fluorescence
DER	Derivatization
DIG	Digestion
DME	Dropping mercury electrode
DMF	Dimethylformamide
ECD	Electron capture detector
Et ₂ Hg	Diethylmercury

^{*} Author to whom correspondence should be addressed.

ETAA	Electrothermally heated atomic absorption
EXT	Extraction
GC	Gas chromatography
GFAA	Graphite furnace atomic absorption
HCL	Hollow-cathode lamp
Hg^0	Elemental mercury
Hg(II)	Mercury(II)
Hg _{tot}	Total mercury
HOM	Homogenization
HPLC	High-performance liquid chromato-
	graphy
ICP	Inductively coupled plasma
LOD	Limit of detection
MeHg	Monomethylmercury cation
Me ₂ Hg	Dimethylmercury
MIP	Microwave-induced plasma detec-
	tor
OX	Oxidation
PRE	Pretreatment
RED	Reduction
RHg	Organomercury ($R = Me \text{ or } Me_2$)
RSĎ	Relative standard deviation
SAMP	Sample
STOR	Sample storage

GENERAL INTRODUCTION

Long-term and increasing interest in the speciation of inorganic mercury [Hg(II)], monomethylmercury cation (MeHg), and occasionally dimethylmercury (Me₂Hg) in environmental and biological samples has resulted in a large number of published analytical methods. A recent interlaboratory study on the determination of methylmercury (MeHg) in fish and mussels¹ clearly shows the importance of a methods review. The

294 R. PUK AND J. H. WEBER

Table 1	Scheme	for	the	determination	of	mercury	com-
pounds.							

Sample treatment	Separation	Detection
Homogenization	Gold	CVAA
Digestion	GC	CVAF
Oxidation	HPLC	ECD
Extraction	Cry-PC	GFAA
Reduction	Carbo trap	MIP
Derivatization	CC .	ETAA
		DME

results were a relative standard deviation between laboratories in the range of 20–25%, indicating a lack of reproducibility of existing methods and the urgent need for improvements in MeHg determinations.

It is clearly impossible for us in a short review to describe hundreds of publications using dozens of analytical methods and their variations. We will summarize only major themes and organize existing methods into three major categories: (1) determination of total mercury (Hg_{tot}), (2) separate determination of Hg(II) and organomercury compounds (RHg) by selective reduction; and (3) speciation of Hg(II), MeHg, and Me₂Hg. Within each category we emphasize originators of methods and newest applications.

require environmental samples sequence of three analytical steps (Table 1) namely sample treatment, separation and detection.^{2,3} Each step is futher divided into one or more specific techniques depending on the mercury compound(s) of interest. Tables 2-4 list analytical methods for determining Hg(II) and methylmercury compounds. They include sample type and treatment, separation method, detection method, and limit of detection (LOD). LOD is the lowest concentration that is statistically different from the blank. 4.5 The tables list LOD based on the mass of mercury per sample weight (fresh weight or dry weight are not always mentioned) or volume. Missing information in some papers made it impossible to calculate LOD as the absolute mass of mercury in samples.

The first entry in Table 2 exemplifies the interpretation of Tables 2-4. Hatch and Ott⁶ determined Hg_{tot} in metal, rock, or soil by a sample treatment of digestion and reduction followed by detection by cold vapor atomic absorption (CVAA). Their method has an LOD of 1 ng $Hg g^{-1}$.

DETERMINATION OF TOTAL MERCURY

Introduction

Determination of Hg_{tot} (Table 2) requires conversion of all forms of mercury to Hg(II). Since samples may contain Hg(II) bound to other molecules such as proteins or humic matter, it must be liberated from ligands present. In addition, sample treatment must convert bound or free MeHg and Me₂Hg to free Hg(II). Researchers usually convert all mercury compounds to free Hg(II) by an acidic, oxidative digestion (Eqns [1] and [2]).

Bound
$$Hg(II) \xrightarrow{DIG/OX} Free Hg(II) \xrightarrow{RED} Hg^{(i)}$$
 [1]

MeHg(or Me₂Hg)
$$\xrightarrow{\text{DIG/OX}}$$
Free Hg(II) $\xrightarrow{\text{RED}}$ Hg⁰ [2]

The final two steps are reduction of Hg(II) to Hg⁰ by Sn(II) or NaBH₄ and detection of Hg⁰, typically by atomic absorption (AA) or atomic fluorescence (AF).

Sample treatment

Researchers have digested and oxidized samples in various ways to release mercury compounds from binding substances, or have sometimes omitted this step. ^{7.8} Bricker⁹ omitted the digestion and storage steps by using a field method for reduction and volatilization of mercury and purging Hg⁰ onto a gold column. Hatch and Ott⁶ digested samples with the oxidizing acid HNO₃. Other researchers used acid digestion and oxidation, ¹⁰⁻¹⁶ with or without heating.

The digestion procedure (if any) is followed by reduction of Hg(II) with tin(II)^{13,14} (Eqn [3]).

$$Hg(II) + Sn(II) \rightarrow Hg^0 + Sn(IV)$$
 [3]

Hatch and Ott,⁶ Rezende *et al.*,¹² Bloom and Crecelius^{10,11} and Robinson and Shuman¹⁵ added hydroxlyamine (NH₂OH) as a preliminary reducing agent before adding the tin(II) solution.

NaBH₄ also reduces Hg(II) to Hg⁰ (Eqn [4]).

$$Hg(II) + 2NaBH_4 + 6H_2O \rightarrow Hg^0 + 7H_2$$

+ $2H_3BO_3 + 2Na^+$ [4]

Bricker⁹ and Tsalev *et al.*¹⁶ used NaBH₄ alone. Two groups^{7,8} used a transition-metal catalyst with NaBH₄.

Table 2 Method summary for the determination of total mercury (Hg_{tot})

Sample type and treatme		Separation	Detection	LOD	Reference
SAMP: DIG: RED:	Metal, rock, soil 7 m HNO ₃ /4.5 m H ₂ SO ₄ NH ₂ OH/NaCl/Sn(II) Air purge	None	CVAA	1 ng g ⁻¹	6
SAMP: DIG: RED:	Urine None NaBH₄/Cu(II)/pH 6.5 buffer Ar purge	None	ETAA	1-2 ng m1 ⁻¹	7
SAMP: DIG: RED:	River water, rainwater, pond water, sewage effluent None NaBH ₄ (in the field) Air purge	Gold	Helium-dc plasma emission	0.0005 ng ml ⁻¹	9
SAMP: DIG: RED:	Water, waste water None NaBH₄/Fe(III)/5 м HCl Ar purge	Gold	CVAA	0.003-0.015 ng mJ ⁻¹	8
SAMP: DIG: OX: RED:	Fish Hot conc HNO ₃ /H ₂ SO ₄ (reflux) 0.2 M BrCl Sn(II) He purge	Gold	CVAF	$1.0~\mathrm{ng~g}^{-1}$	13, 14
SAMP: DIG/OX: RED:	Urinc, river, lake water, rain water Microwave (50–90°C) KBrO₃/KBr/HCl NaBH₄/0.1 м HCl Ar purge	Gold or without Gold	CVAA	0.01 ng ml ⁻¹ (with gold) 0.2 ng ml ⁻¹ (without gold)	16
SAMP: STOR: DIG: OX: RED:	Seawater, sediment, sewage effluent 2% HNO ₃ Conc HNO ₃ /H ₂ SO ₄ (sediment only) 0.2 M BrCl NH ₂ OH/Sn(II) N ₂ purge	Gold	CVAA	0.0001 ng ml ¹	10, 11
SAMP: STOR: DIG: OX: RED:	Stream water, river water HNO ₃ /K ₂ Cr ₂ O ₇ /cysteine Hot (60°C) H ₂ SO ₄ /HNO ₃ KMnO ₄ /K ₂ S ₂ O ₈ NH ₂ OH/Sn(II) N ₂ purge	Gold	CVAA	0.02 ng ml ⁻¹	15
SAMP: DIG: OX: RED:	Fish HNO ₃ /H ₂ SO ₄ (4.5 M) KMnO ₄ NH ₂ OH.HCl/Sn(II) in 15% HCl Air purge	None	CVAA	25 ng g	12

Table 3 Method summary for the determination of (Hg(II) and RHg by selective reduction

Sample type and treatment		Separation	Detection	LOD	Reference
$Hg(II) + RHg = Hg_{tot}$ SAMP: DIG:	Fish, misc. biological samples 45% NaOH/1% cysteine/ 20% NaCl/100°C	None	CVAA	10 ng ml · l	22
Hg(II) RED:	Sn(II)/8 M H ₂ SO ₄ /cysteine/NaCl Air purge (NaOH added)				
RHg RED:	Sn(II)-Cd(II)/8 M H ₂ SO ₄ /cysteine/NaCl Air purge (NaOH added)				
$Hg(II) + RHg = Hg_{tot}$ SAMP: DIG: OX:	Tap water, tuna, hair, urine 10 M KOH $(90 ^{\circ}\text{C})$ 0.24 M HNO $_3/0.01\%$ K ₂ Cr ₂ O ₇ /1% NaCl	None	CVAA	0.003-0.005 ng ml ⁻¹	21
Hg(II) RED:	Sn(II)/HNO ₃ /K ₂ Cr ₂ O ₇ N ₂ purge				
RHg RED:	NaBH ₄ /HNO ₃ /K ₂ Cr ₂ O ₇ N ₂ purge				
$Hg(II) + RHg = Hg_{tot}$ SAMP: DIG:	fish water/4.5 M H ₂ SO ₄ /KBr	None	CVAA	25 ng g	12
Hg(II) RED:	water phase after extraction with CHCl ₃ /NaBH ₄ Air purge				
RHg EXTR:	as McHgBr into CHCl ₃				
RED:	NaBH ₄ /DMF/HNO ₃ Air purge				
$Hg_{tot} - Hg(II) = RHg$ SAMP: STOR:	Freshwater takes and rivers 0.05 M HCl	Gold	CVAF	Sn(II): 0.048 ng ml	26
Hg(II) RED:	Sn(11)/0.05 M HCL			NaBH ₄ : 0.192 ng ml ⁻¹	
Hg _{tot} OX: RED:	BrCl NaBH ₄ /0.05 M HCl or Sn/0.05 M HCl He purge				

Table 3 continued

Sample type and treatment		Separation	Detection	LOD	Reference
Hg(II) ^a SAMP: OX: RED:	standards, tap water, river water 0.16 M HNO ₃ /KMnO ₄ Sn(II)/0.12 M HCl Air purge	None	CVAA	0.001 ng ml ⁻¹	25
Hg(II) ^a SAMP:	seawater, rain water, estuarine water, river water	Gold	CVAA	$0.042~\mathrm{ng~ml^{-1}}$	24
DIG: STOR: RED:	None 0.06 м HNO ₃ Sn(II) N ₂ purge				

^a Hg_{tot} – Hg(II) = MeHg: this Hg(II) method is used with a Hg_{tot} method in Table 1 to determine MeHg by difference.

Separation/concentration

The high 1.2×10^{-3} mm Hg vapor pressure of Hg⁰ at 20 °C simplifies its detection by AA. Hg⁰ formed during the reduction step is often concentrated on a gold column^{8-11,13-16} and then thermally desorbed prior to detection. Water, volatile organic compounds, sulfides or Cl₂ can sometimes interfere with the amalgamation of Hg⁰. ^{17,18} Concentration of Hg⁰ on the gold column can decrease LOD by 20-fold. For example, Tsalev *et al*. ¹⁶ had an LOD of 0.2 ng ml⁻¹ without a gold column and of 0.01 ng ml⁻¹ with it.

Detection

Many groups^{6,8,10,12,15,16} used CVAA for the detection of Hg⁰. CVAA avoids problems with nebulization and atomization that occur in classical flame AA.¹⁹ Cold vapor atomic fluorescence (CVAF) detection for Hg⁰ often has improved the LOD relative to AA detection.¹³ Other types of detection include a electrothermally heated atomic absorption cell (ETAA)⁷ and helium–dc plasma emission.⁹

DETERMINATION OF Hg(II) AND RHg BY SELECTIVE REDUCTION

Introduction

Separate determinations of Hg(II) and RHg (Table 3) combine two reactions that are carried out sequentially on one or more sample aliquots.

The first reaction is typically reduction by the mild reducing agent tin(II) that reduces free Hg(II) to Hg⁰ (Eqn [3]), but not C-Hg bonds in RHg. After complete purging of the resulting Hg⁰, the same aliquot is treated under acid and oxidizing conditions to break C-Hg bonds in RHg and form Hg(II) which is reduced to Hg⁰ (Eqn [2]). The separation and detection steps are similar to those described above.

A disadvantage of selective reduction techniques is the impossibility of confirming the identity of RHg. For example, the selective reduction method does not permit researchers to distinguish MeHg from Me₂Hg. The typical assumption is that RHg is predominant MeHg since it is the nearly exclusive form of RHg in fish. Researchers have used selective reduction on samples such as fish, 12, 20-22 hair and urine, 21 animals 22 and blood. 23

Sample treatment for mercury(II)

The sample treatment used to determine Hg(II) should separate free Hg(II) from any chemical that binds it without breaking C-Hg bonds. Digestion with NaOH and cysteine²² or KOH²¹ leaves the C-Hg bond intact but frees any bound Hg(II). Determination of Hg(II) in aquatic matrices involves sample treatment with tin(II) in aqueous dilute hydrochloric acid (HCl) to reduce Hg(II) to Hg⁰. ^{24,25} HCl prevents adsorption of mercury compounds on the sample container prior to reduction. Rezende *et al*. ¹² used NaBH₄ rather than tin(II) with air purging to reduce the Hg(II) in the aqueous phase to Hg⁰.

Table 4 Method summary for speciating Hg(II), M eHg and Me₂Hg

Sample type and treatment		Separation	Detection	LOD	Reference
MeHg SAMP: DIG: HOM: EXT:	Fish, eggs, meat, liver None Water/HCl Benzene, cysteine, HCl, benzene	GC	ECD	70-400 ng g ⁻¹	27, 28
MeHg SAMP: DIG: DER:	Fish, biological tissue Conc H ₂ SO ₄ Iodoacetic acid	GC	MIP	20 ng g ⁻¹	36
MeHg SAMP: HOM: EXT:	Fish Water/6 M HCl/ Celite 545 Elute with CCl ₄ , Na ₂ S ₂ O ₃ (to eluate) Air or N ₂ purge	HPLC	Heat/CVAA or DME	$0.37 - 0.6 \text{ ng g}^{-1}$	33
MeHg, Me ₂ Hg SAMP: DIG: RED:	Fish KOH/MeOH (70 °C)/neutralize NaBEt ₄ /pH 4.5 acetate buffer N ₂ or air purge to Carbo trap He purge to Cry-PC	Carbo trap/ Cry-PC	CVAF	MeHg: 0.5 ng g ⁻¹ Me ₂ Hg: 0.1 ng g ⁻¹	13, 14
MeHg SAMP: DIG: HOM: EXT:	Fish, eggs, meat, liver None Water/HCl Benzene, cysteine, HCl, benzene	GC	ECD	70–400 ng g ¹	27, 28
Hg(II), MeHg SAMP: HOM:	Fish, biological materials Water/NaCl/1 M HCl		GFAA	3.0 ng mL ⁻¹	34
Hg(II) DER/EXT:	Me ₄ Sn/MeOH (100 °C) Benzene/Na ₂ S ₂ O ₃ /benzene				
MeHg EXT:	Benzene, Na ₂ S ₂ O ₃ /Cu(II)/benzene				
Hg(II), MeHg SAMP: DER:	Standards, tap water Hg-APDC complex formed on	HPLC	NaBH ₄ /CVAA (on eluted	MeHg: 0.5 ng ml ⁻¹ Hg(II): 0.015 ng ml ⁻¹	43
RED:	column Elute with APDC Eluent with NaBH ₄		sample)	-	

Table 4 continued

Sample type					_
and treatme	nt	Separation	Detection	LOD	Reference
Hg(II), MeH	łg				
SAMP: STOR: Hg(II)	River water, tap water 0.08 m HNO ₃	CC	CVAF	6 ng g ⁻¹	35
Pre:	Pass through sulfhydryl cotton column with 0.01 M				
OX: RED:	KBr/KBrO ₃ Eluate with Sn(II)/HCl				
MeHg PRE: OX: RED:	Elute column with 3 M HCl KBr/KBrO ₃ Sn(II)/HCl				
Me_2Hg SAMP:	Seawater	Carbo trap/Cry-PC	Heat/CVAF		13
Hg(II), MeH	Ig, Me₂Hg				
SAMP: HOM: RED:	Fish, seawater KOH/MeOH NaBEt ₄ /pH 4.5 acetate buffer	Gold/Carbo trap/ Cry-PC	Heat/CVAF	Seawater: 0.2 ng l^{-1} (Hg(II), 0.003 ng l^{-1} (MeHg and Me ₂ Hg)	13, 14
	He purge			Fish: 0.5 ng g ⁻¹ (MeHg), 0.1 ng g ⁻¹ (Me ₂ Hg)	
MeHg, Me ₂ h	Нд				
SAMP: EXT: DER:	Sediment Acetic acid NaBH ₄ /acetic acid (pH 3.5) He purge	Cry-PC	H ₂ /O ₂ /ETAA		39
Hg(II), MeH	dg				
SAMP: DIG: DER:	Fish, lobster KOH/MeOH NaBEt ₄ /pH 4.5 acetate buffer He purge	Cry-PC	ЕТАА	MeHg: 4 ng g ⁻¹ Hg(II): 75 ng g ⁻¹	44
Hg(II), MeF SAMP:	S. alterniflora, eelgrass	Cry-PC	ЕТАА	Hg(II): 0.11 ng g ⁻¹	42
EXT: DER/RED:	0.1 м HCl, MeOH NaBH₄/0.01 м HCl He purge			MeHg: 0.05 ng g^{-1}	

Sample treatment for RHg

Under most conditions, NaBH₄ does not reduce MeHg. However, NaBH₄ and air purge in the presence of dimethylformamide, ¹² NaBH₄ and nitric acid, ²¹ or tin(II) plus metal-ion catalysts²² reduce RHg left in the sample aliquot after the removal of Hg(II).

Separation and detection

A separation using a gold trap is generally unnecessary since both Hg(II) and RHg are separately reduced to volatile Hg⁰. ^{12. 21. 22} However, Gill and Bruland²⁶ and Gill and Fitzgerald²⁴ did use a gold trap. The usual detectors for Hg⁰ are CVAA^{12. 21. 22. 24. 25} and CVAF. ²⁶

300 R. PUK AND J. H. WEBER

SPECIATION OF Hg(II), MeHg AND Me₂Hg

Introduction

Speciation of Hg(II), MeHg, and Me₂Hg (Table 4) generally requires extraction and derivatization (not all methods), separation and concentration (not all methods), and detection. This speciation section differs from the selective reduction section (Table 3) by identifying RHg compounds and confirming that the organomercury compound most commonly observed in the environment is MeHg.

Sample treatment

Extraction

Hundreds of papers on the determination of MeHg in the environment have appeared during the past 25 years. Most researchers use a variation of the original extraction method reported by Westöö. ^{27, 28} Researchers have applied the method to a wide variety of sample types including fish, food, seawater, sediment, blood and urine. One goal of these extraction methods is to separate Hg(II) from MeHg. A second goal is to concentrate MeHg and separate it from chemicals such as proteins and humic matter to avoid interferences during the detection step. Extraction methods are commonly used before separation and detection by gas chromatography (GC). ^{28, 29}

In the Westöö^{27,28} method samples are typically homogenized in water, acidified with hydrochloric acid and treated with benzene to extract MeHgCl from the aqueous phase into benzene. After extraction of MeHgCl from the benzene phase with aqueous cysteine, the intitial benzene layer is discarded. The aqueous solution is acidified to break up the cysteine–MeHg complex and MeHg is again extracted into benzene.

Many determinations of MeHg in environmental samples are performed by variations of the Westöö extraction method in which bound Hg(II) and MeHg are converted to free forms using HCl or HBr.^{30,31} Free MeHg halide is extracted into an organic solvent such as benzene,²⁸ toluene,^{29,32} dichloromethane^{13,32} or CCl₄.³³ MeHg halide is extracted from the organic phase by aqueous thiosulfate ion^{33,34} or cysteine.^{28,29} Other sample treatments requiring separation have been accomplished on microcolumns of sulfhydryl cotton,³⁵ which binds MeHg but not Hg(II). The eluted Hg(II) is treated with an oxidizing agent

and reduced to Hg⁰ with tin(II). MeHg is eluted from the column with 3 M HCl, an oxidizing agent is added to the solution, and Hg(II) is reduced to Hg⁰ with tin(II) before its detection.

Derivatization

Some researchers have emphasized methods of volatizing MeHg to avoid extractions. For example, Lansens and Baeyens³⁶ and Decadt *et al.*³⁷ separated MeHg from biological tissue by treatment with concentrated sulfuric acid in a closed vial and conversion of MeHg into volatile MeHgI by addition of iodoacetic acid.

Bloom¹³ developed based on ethylation of Hg(II) and MeHg to produce volatile compounds. The digested sample is reacted with sodium tetraethylborate (NaBEt₄) to convert MeHg to methylethylmercury (MeEtHg) (Eqn [5]) and Hg(II) into diethylmercury (Et₂Hg) (Eqn [6]).

$$MeHg^+ + NaBEt_4 \rightarrow MeEtHg + 'BEt_3' + Na^+$$
 [5]

$$Hg(II)^{2+} + 2NaBEt_4 \rightarrow Et_2Hg + 2BEt_3' + 2Na^+$$
 [6]

In both equations 'BEt₃' represents unstable BEt₃ which reacts with air and water.

More recently two groups³⁸⁻⁴¹ reported a hydride derivatization method in which NaBH₄ converts MeHg into volatile MeHgH (Eqn [7]).

MeHg⁺ + NaBH₄ + 3H₂O
$$\rightarrow$$
 MeHgH + 3H₂
+ H₃BO₃ + Na⁺ [7]

NaBH₄ also reduces Hg(II) to Hg⁰ (Eqn [4]) and Me₂Hg is purged unchanged. Quevauviller *et al.*³⁹ used this hydride generation method for detection of Me₂Hg in sediment samples. Puk and Weber⁴² further developed the method for determinations of Hg(II), MeHg, Me₂Hg and Et₂Hg.

Separation by GC, HPLC or cryogenic packed column (Cry-PC)

GC^{28, 29, 34} or derivatization followed by GC³⁶ is often used for separation of MeHg after extraction. HPLC has an advantage over GC in that formation of volatile derivatives is not necessary.^{33, 43}

The volatile products formed by reactions with NaBEt₄ or NaBH₄ can be separated in several ways. Hg⁰, Me₂Hg, MeEtHg (Eqn [5]) and Et₂Hg (Eqn [6]) are separated sequentially with a gra-

phite carbon column, gold column and Cry-PC 13,14 or Cry-PC alone. 44 Hg 0 (Eqn [4]), MeHgH (Eqn [7]), and Me₂Hg from the NaBH₄ reaction can be separated on a Cry-PC. 39,42

Detection

MeHg from an extracted sample can be separated by GC and detected by an electron capture detector (ECD)^{28, 29, 45, 46}, helium microwave induced plasma emission spectrometry, mass spectrometry, inductively coupled plasma—mass spectometry, or graphite furnace atomic absorption (GFAA).³⁴

Hg⁰ can be detected after Cry-PC separation by atomic spectrometry either by CVAF¹³ or by ETAA. ^{42, 44} CVAA is a sensitive enough method for determining MeHg in environmental samples, provided it is converted into Hg⁰ before detection.

The eluate from a high-performance liquid chromatography (HPLC) separation^{33, 43} must be reduced by NaBH₄⁴³ or atomized by thermal decomposition³³ for determination of MeHg and/ or Me₂Hg as Hg⁰.

Hg⁰ is detected after HPLC by atomic spectrometry using CVAA,^{33,43} atomic emission spectrometry^{51,52} or CVAF after separation on a microcolumn.³⁵

Critique of the possible presence of Me₂Hg

Recently Baldi et al.53 reported formation of from MeHg by sulfate-reducing Desulfovibrio desulfuricans strains. This result suggests that Me₃Hg may be more common in the aquatic environment that was generally believed. Despite this possibility, only Mason and Fitzgerald, 54 Quevauviller et al., 39 Puk and Weber⁴² and Bloom¹³ have observed Me₂Hg in environmental samples. Virtually all known procedures for speciating RH_g in environmental and biological matrices have emphasized MeHg because MeHg was considered the sole RHg synthesized by bacteria in the aquatic environment. In this section we will attempt to convince the reader that with many common analytical methods for speciation of mercury compounds, Me₂Hg would not be observed even if it were present.

There for several reasons for non-observance of Me₂Hg in environmental samples:

(1) Volatilization of Me₂Hg may occur during

- storage, homogenization, hot digestion or other means of sample preparation.
- (2) Me₂Hg may be lost during extraction of toluene or benene phases with aqueous cysteine or S₂O₃²⁻. We confirmed (unpublished results) that Me₂Hg sometimes remains in the original organic phase which is usually discarded.
- (3) Me₂Hg may not be detected when GC-ECD is used. The ECD is very sensitive to compounds like MeHgCl that contain at least one electronegative element, but it is not very sensitive to Me₂Hg. In addition, the absence of a retention time from Me₂Hg standards would accentuate the difficulties of identifying it.
- (4) Me₂Hg may not be seen because of its high density and low solubility in H₂O. We sometimes observed significant amounts of Me₂Hg after extraction of plant material with 0.1 M HCl, and sometimes saw none in the same extract. The reason was that Me₂Hg was insoluble and at the bottom of the water layer. Addition of MeOH (1:1) to the 0.1 M HCl solubilized Me₂Hg and allowed its determination.⁴²
- (5) Determination of Me₂Hg during extractions requires sufficient acidity to free it from ligands in the matrix, but not enough to convert it to MeHg or Hg(II). Papers have estimated the maximum concentration of acid that leaves C-Hg bonds intact ^{13, 53, 55} but the results are inconsistent. Our unpublished work tested the stability of Me₂Hg in aqueous HCl solutions while sonicating 1 h at 40 °C. Under these conditions Me₂Hg is stable in 0.1 M HCl, partially decomposed in 1 M and 3 M HCl, and unstable in 6 M HCl. Many researchers used sufficiently strong acidic solutions for extractions, etc., to decompose Me₂Hg.

REFERENCES

- P. Quevauviller, I. Drabaek, H. Muntau, B. Griepink, Appl. Organomet. Chem. 7, 413 (1993).
- O. F. X. Donard and F. M. Martin, Trends Anal. Chem. 11, 17 (1992).
- 3. D. E. Wells, Mikrochim. Acta 109, 13 (1992).
- L. H. Keith, W. Crummett, J. Deegan Jr, R. A. Libby, J. K. Taylor and G. Wentler, *Anal. Chem.* 55, 2210 (1983).

- 5. Anon, Analyst (London) 112, 199 (1987).
- 6. R. Hatch and W. L. Ott, Anal. Chem. 40, 2085 (1968).
- 7. J. Toffaletti and J. Savory, Anal. Chem. 47, 2091 (1975).
- 8. B. Welz and M. Schubert-Jacobs, *Fres. Z. Anal. Chem.* **331**, 324 (1988).
- 9. J. L. Bricker, Anal. Chem. 52, 492 (1980).
- N. S. Bloom and E. A. Crecelius, Mar. Chem. 14, 49 (1983).
- N. S. Bloom and E. A. Crecelius, Mar. Chem. 21, 377 (1987).
- M. R. Rezende, R. C. Compos and A. J. Curtius, J. Anal. Atom. Spectrom. 8, 247 (1993).
- 13. N. S. Bloom, Can. J. Fish. Aquat. Sci. 46, 1131 (1989).
- 14. N. S. Bloom, Can. J. Fish. Aquat. Sci. 49, 1010 (1992).
- K. G. Robinson and M. S. Shuman, *Int. J. Environ. Anal. Chem.* 36, 111 (1989).
- D. L. Tsalev, M. Sperling and B. Welz, Analysi (London) 117, 1729 (1992).
- M. H. Bothner and D. E. Robertson, *Anal. Chem.* 47, 592 (1975).
- 18. W. F. Fitzgerald and G. A. Gill, 51, 1714 (1979).
- 19. A. M. Ure, Anal. Chim. Acta 76, 1 (1975).
- K. Fukushi, S. N. Willie and R. E. Sturgeon, *Anal. Lett.* 26, 325 (1993).
- C. E. Oda and J. D. Ingle Jr, Anal. Chem. 53, 2305 (1981).
- 22. L. Magos, Analyst (London) 96, 847 (1971).
- L. Magos and T. W. Clarkson, J. Assoc. Off. Anal. Chem. 55, 966 (1972).
- G. A. Gill and W. F. Fitzgerald, Mar. Chem. 20, 227 (1987).
- 25. J. E. Hawley and J. D. Ingle Jr, Anal. Chem. 47, 719
- G. A. Gill and K. W. Bruland, *Environ. Sci. Technol.* 24, 1392 (1990).
- 27. G. Westöö, Acta Chem. Scand. 20, 2131 (1966).
- 28. G. Westöö, Acta Chem. Scand. 21, 1790 (1967).
- M. Horvat, A. R. Byrne and K. May, *Talanta* 37, 207 (1990).
- C. Meuleman, C. C. Laiño, P. Lansens and W. Baeyens, Water Res. 27, 1431 (1993).
- G. Cerrati, M. Bernhard and J. H. Weber, Appl. Organomet. Chem. 6, 587 (1992).
- 32. Y. Thibaud and D. Cossa, Appl. Organomet. Chem. 3,

- 257 (1989).
- 33. W. Holak, Analyst (London) 107, 1457 (1982).
- 34. M. Filippelli, Anal. Chem. 59, 116 (1987).
- 35. W. Jian and C. W. McLeod, Talanta 39, 1537 (1992).
- P. Lansens and W. Baeyens, Anal. Chim. Acta 228, 93 (1990).
- G. Decadt, W. Baeyens, D. Bradley and L. Goeyens, Anal. Chem. 57, 2788 (1985).
- M. Filippelli, F. Baldi, F. E. Brinckman and G. J. Olson, *Environ. Sci. Technol.* 26, 1457 (1992).
- P. Quevauviller, O. F. X. Donard, J. C. Wasserman, F. M. Martin and J. Schneider, Appl. Organomet Chem. 6, 221 (1992).
- P. J. Craig, D. Mennie, N. Ostah, O. F. X. Donard and F. Martin, Analyst (London) 117, 823 (1992).
- P. J. Craig, D. Mennie, M. Needham, N. Ostah,
 O. F. X. Donard and F. Martin, J. Orgonomet. Chem.
 447, 5 (1993).
- 42. R. Puk and J. H. Weber, Anal. Chim. Acta (1994), in press.
- C. Sarzanni, G. Sacchero, M. Aceto, O. Abollino and E. Mentasti, J. Chromatogr. 1992, 626, 151 (1992).
- R. Fischer, S. Rapsomanikis and M. O. Andreae, *Anal. Chem.* 65, 763 (1993).
- C. J. Cappon and J. C. Smith, Anal. Chem. 49, 365 (1977).
- 46. V. Zelenko and L. Kosta, Talanta 20, 115 (1973).
- 47. Y. Talmi, Anal. Chim. Acta 74, 107 (1975).
- 48. K. Chiba, K. Yoshida, K. Tanabe, H. Haraguchi and K. Fuwa, *Anal. Chem.* 55, 450 (1983).
- B. Johansson, R. Ryhage and G. Westöö, *Acta Chem. Scand.* 24, 2349 (1970).
- D. Beauchemin, K. W. M. Siu and S. S. Berman, *Anal. Chem.* 60, 2587 (1988).
- M. Fujita and E. Takabatake, Anal. Chem. 55, 454 (1983).
- F. E. Brinckman, W. R. Blair, K. L. Jewett and W. P. Iverson, J. Chromatogr. Sci. 15, 493 (1977).
- F. Baldi, M. Pepi and M. Filippelli, Appl. Environ. Microbiol. 59, 2479 (1993).
- R. P. Mason and W. F. Fitzgerald, Wat. Air Soil Pollut. 56, 779 (1991).
- N. Imura, E. Sukewaga, S. K. Pan, K. Nagao, J. K. Kim, T. Kwan and T. Ukita, *Science* 172, 1248 (1972).