# METHYL FORMATION FROM METHANOL DECOMPOSITION ON Pd{111} AND Pt{111}

### Robert J. LEVIS, Jiang ZHICHENG and Nicholas WINOGRAD

The Pennsylvania State University, Department of Chemistry, University Park, PA 16802, U.S.A.

and

#### Sohail AKHTER and J.M. WHITE

University of Texas, Austin, Department of Chemistry, Austin, TX 78712, U.S.A.

Received 15 July 1988; accepted 30 September 1988

The decomposition of  $CH_3OH$  adsorbed on  $Pd\{111\}$  and  $Pt\{111\}$  is compared as the surface is heated between 100 and 500 K. Using secondary ion mass spectrometry (SIMS) and thermal programmed desorption (TPD) it is suggested that an anomalous  $CH_3^+$  ion signal observed previously by Akhter and White on oxygen precovered  $Pt\{111\}$  arises from the formation of a surface  $CH_3$  species resulting from activation of the C-O bond of  $CH_3OH$ . This interpretation stems from a recent observation by Levis, Zhicheng and Winograd that  $CH_3OH$  decomposes to  $CH_3$ , OH and  $OCH_3$  on clean  $Pd\{111\}$  between 100 and 300 K. The results are discussed in terms of the relative ability of these metals to synthesize  $CH_3OH$  from CO and  $H_2$ .

Secondary ion mass spectrometry (SIMS) has recently been applied towards elucidating the surface chemistry of CH<sub>3</sub>OH adsorbed on oxygen precovered  $Pt\{111\}$  [1] and clean  $Pd\{111\}$  [2] between 100 and 400 K. For both systems, the positive ion observed at m/e 15, assigned to  $CH_3^+$ , is detected as a function of surface temperature and is related to the CH<sub>3</sub>OH<sub>ads</sub> thermal decomposition reaction mechanism. Thermal programmed desorption (TPD) and SIMS studies of CH<sub>3</sub>OH adsorbed on O/Pt{111} suggest that CH<sub>3</sub>OH<sub>ads</sub> decomposes to CH<sub>3</sub>O<sub>ads</sub> (methoxide) from 116 K to 140 K and that further heating causes decomposition to CO and H<sub>2</sub>. On Pd{111}, X-ray photoelectron spectroscopic (XPS) and SIMS measurements suggest that CH<sub>3</sub>OH<sub>ads</sub> decomposes to CH<sub>3ads</sub>, CH<sub>3</sub>O<sub>ads</sub> and H<sub>2</sub>O<sub>ads</sub> above 175 K, and that further decomposition to CO and H<sub>2</sub> occurs above 350 K. In light of the study, an anomalous increase in the CH<sub>3</sub><sup>+</sup> SIMS intensity vs. temperature plot for certain CH<sub>3</sub>OH coverages reported in the Pt{111} investigation can be attributed to the formation of a CH<sub>3</sub> species. The production and stability of CH<sub>3ads</sub> on each surface may have implications in the relative catalytic properties of Pd and Pt based catalysts.

A critical contribution from the investigation on O/Pt{111} is that the transformation from  $CH_3OH_{ads}$  to  $CH_3O_{ads}$  can be detected using SIMS since the  $CH_3^+$  intensity from  $CH_3OH_{ads}$  is much larger than that from  $CH_3O_{ads}$ . This difference in fragmentation efficiency accounts for the pronounced decrease in the  $CH_3^+$  SIMS signal in the temperature programmed (TP) SIMS spectrum shown in figure 1a, b and c between 110 and 140 K. During the TPSIMS experiment on Pt{111} an anomalous increase in the  $CH_3^+$  signal is observed at 180 K. This signal vanishes at 220 K for initial  $CH_3OH$  exposures  $\geq 0.12$  L and does not reappear at temperatures at least up to 900 K. The anomalous increase was tentatively assigned to a change in the ionization probability of the  $CH_3^+$  SIMS signal resulting from desorption of  $H_2O$  at 180 K.

On clean Pd{111} recent SIMS and XPS measurements of the CH<sub>3</sub>OH thermal decomposition reaction from 110 K to 400 K have shown that CH<sub>3ads</sub>, H<sub>2</sub>O<sub>ads</sub> and CH<sub>3</sub>O<sub>ads</sub> are formed with increasing surface temperature [2]. The XPS data, for example, show that there are two C 1s peaks of equal intensity formed at 175 K at 285.9 eV and 284.2 eV. The 285.9 eV peak is shown to arise from OCH<sub>3ads</sub> by comparison to the spectra for CH<sub>3</sub>OH adsorbed on O/Pd{111} which is known to produce OCH<sub>3ads</sub> [4]. The 284.2 eV peak is assigned to CH<sub>3ads</sub>. Although it is not possible to make this assignment from XPS data alone, we have shown that the intensity of this peak as a function of temperature correlates with the CH<sub>3</sub><sup>+</sup> ion observed in SIMS. The direct assignment of this CH<sub>3</sub><sup>+</sup> ion to CH<sub>3ads</sub> is possible for a number of reasons. First, a major source of CH<sub>3</sub><sup>+</sup> is from the ion-beam induced cracking of CH<sub>3</sub>OH<sub>ads</sub>. This species is gone from the surface by ~ 150 K and cannot contribute to the signal. Secondly, the CH<sub>3</sub><sup>+</sup> ion intensity derived from the ion-beam induced cracking of OCH3ads is found to be quite small on both Pt [1] and Pd [2,3]. Note, for example, that no increase in the CH<sub>3</sub>+ ion intensity is observed in figure 1c even though there is an extensive amount of OCH<sub>3ads</sub> formation [1]. Finally, it is possible that CH<sub>3</sub><sup>+</sup> ion signals could arise from recombination during desorption of =CH2 or ≡CH surface species with H<sup>+</sup>. The CH<sub>2</sub><sup>+</sup> and CH<sup>+</sup> ion signals must also be present in this scenario. Since the SIMS result is conspicuously missing contributions from these fragment ions, we have concluded [2,3] that the only possible assignment for the large m/e 15 intensity and for the 284.2 eV C 1s peak after desorption and decomposition of CH<sub>3</sub>OH is to CH<sub>3ads</sub>.

With these assignments in hand, it is of value to compare the behavior of the m/e 15 peak for CH<sub>3</sub>OH decomposition on Pd{111} to that found for Pt{111} between 110 and 400 K. For a 1 L CH<sub>3</sub>OH exposure on Pd{111}, as shown in fig. 1d, the CH<sub>3</sub><sup>+</sup> SIMS intensity initially decreases between 110 and 150 K, once again indicating decomposition to CH<sub>3</sub>O<sub>ads</sub>. Above 150 K the CH<sub>3</sub><sup>+</sup> signal increases in a manner similar to the anomalous result on Pt{111}. The CH<sub>3</sub><sup>+</sup> intensity reaches a maximum at 200 K. The subsequent decrease between 200 and 300 K is due in part to a gradual removal of surface species,  $\approx 15\%$  by 300 K, by the primary ion beam. On the Pd{111} surface the increase in the CH<sub>3</sub><sup>+</sup> signal is

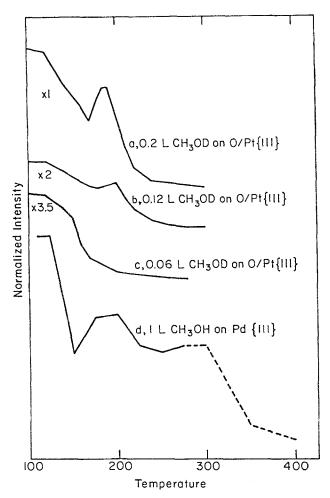



Fig. 1. Plots of the CH<sub>3</sub><sup>+</sup> ion intensity as a function of surface temperature for a) 0.20 L CH<sub>3</sub>OD, b) 0.12 L CH<sub>3</sub>OD, c) 0.06 L CH<sub>3</sub>OD adsorbed at 100 K on 0.25 ML O on Pt{111}. The primary ion current was 1 nA and the heating rated was 1.1 K sec<sup>-1</sup>. d) A plot of the CH<sub>3</sub><sup>+</sup> ion intensity as a function of temperature for a 1 L exposure of CH<sub>3</sub>OH adsorbed at 110 K on Pd{111}. The dotted line is taken from an experiment of similar exposure at 130 K which was heated immediately to 273 K. For this plot, an entire SIMS spectrum is recorded, the temperature is then ramped 25 K and another spectrum is recorded. The primary ion current was 2.0 nA cm<sup>-2</sup> and the beam energy was 3 keV.

not followed by the same substantial decrease at 220 K as on the Pt{111} surface. Rather, the CH<sub>3</sub> ion intensity slowly decreases until above 300 K, where CH<sub>3ads</sub> presumably begins to decompose to  $C_{ads}$ . Further heating to 300 K produces no change in the C 1s spectrum, while heating to 400 K causes the doublet of peaks at 285.9 and 284.2 eV to coalesce to a single peak at 284.3 eV, most likely attributable to  $C_{ads}$ . The results on Pd{111}, which strongly suggest the formation and detection of CH<sub>3ads</sub> using SIMS, imply that the anomalous increase in the CH<sub>3</sub><sup>+</sup> signal on the O/Pt{111} surface between 180 and 220 K is also due to the formation of a CH<sub>3</sub> species.

The possibility of producing CH<sub>3ads</sub> on O/Pt{111} permits an interpretation of a second anomalous result in the TPSIMS spectra of the CH<sub>3</sub><sup>+</sup> ion on O/Pt{111}. The increase in the CH<sub>3</sub><sup>+</sup> intensity between 180 K and 220 K shown in fig. 1a, b and c demonstrate a dependence on the initial CH<sub>3</sub>OD exposure. The amount of the anomalous CH<sub>3</sub><sup>+</sup> intensity is proportional to the CH<sub>3</sub>OH<sub>ads</sub> to O<sub>ads</sub> ratio, or put another way, increasing the CH<sub>3</sub>OD exposure increases the amount of CH<sub>3</sub><sup>+</sup> ion observed between 180 K and 200 K. This suggests that a certain amount of CH<sub>3</sub>OD<sub>ads</sub> will titrate all of the available O sites, and that excess CH<sub>3</sub>OD<sub>ads</sub>, possibly bound to clean Pt sites, will then dissociate at the CO bond to form CH<sub>3ads</sub> and OD<sub>ads</sub>. This is consistent with the notion that O sites enhance the formation of CH<sub>3</sub>O [5–10] and with the result on Pd{111} suggesting that the clean surface may promote the activation of the methanolic CO bond. A similar titration of the O sites on O/Pd{111} is suggested by an inverse relationship between the C 1s XPS signal at 284.2 eV, which denotes CH<sub>3ads</sub> formation, and the initial O coverage [3].

In conclusion, we consider the relative stability of the CH<sub>3</sub> species on Pt{111} and Pd{111}. The CH<sub>3</sub> adsorbate decomposes at 220 K on the Pt{111} surface while on the Pd{111} surface the adsorbate is stable at least until 325 K. The XPS and SIMS experiments on the decomposition of CH<sub>3</sub>OH on O/Pd{111} [3] demonstrate that once formed, the CH<sub>3</sub> adsorbate has a stability which is virtually identical to CH<sub>3ads</sub> on the clean surface. This suggests that the decomposition temperature for CH<sub>3ads</sub> formed on O/Pt{111} approximates that found on the clean Pt{111}. We conclude that the CH<sub>3</sub> species is not as stable on Pt{111} as on Pd{111} which may correlate to the relative catalytic properties of these two metals. A stabilized CH<sub>3ads</sub> hydrocarbon fragment on the Pd{111} surface may explain the ability of pure Pd catalysts [11] to produce only CH<sub>3</sub> containing species such as CH3H, CH3OH, CH3CH3, and CH3OCH3 from CO and H<sub>2</sub> feed gases from the combination of CH<sub>3ads</sub> with H<sub>ads</sub>, OH<sub>ads</sub> CH<sub>3ads</sub> and OCH<sub>3ads</sub>, respectively. In addition, the lower stability of the CH<sub>3</sub> fragment on the Pt surface may correspond with the order of magnitude lower CH<sub>3</sub>OH production rate on Pt catalysts when compared to Pd catalysts [12]. It would be of interest to use SIMS to determine the relative thermal stability of the methyl adsorbate on Ir{111}, which is comparable to Pt in CH<sub>3</sub>OH production [12], and Ni{111}, which produces no CH<sub>3</sub>OH from CO and H<sub>2</sub> precursors. We believe that the combination of SIMS with quantitative surface techniques is particularly powerful for the pursuit of relatively complex adsorbate/metal decomposition mechanisms.

#### Acknowledgments

The authors are grateful to the National Science Foundation and the Office of Naval Research for the financial support of this work.

## References

- [1] S. Akhter and J.M. White, Surf. Sci. 167 (1986) 101.
- [2] R.J. Levis, Z.C. Jiang and N. Winograd, J. Am. Chem. Soc. 110 (1988) 4431.
- [3] R.J. Levis, Z.C. Jiang and N. Winograd, in preparation.
- [4] J.A. Gates and L.L. Kesmodel, J. Catal. 83 (1983) 437.
- [5] J.L. Davis and M.A. Barteau, Surf. Sci. 197 (1988) 123.
- [6] S.R. Bare, J.A. Strocio and W. Ho, Surf. Sci. 155 (1985) L281.
- [7] J. Hrbek, R. De Paola and F.M. Hoffmann, Surf. Sci. 166 (1986) 361.
- [8] J.N. Russell, S.M. Gates and J.T. Gates, Surf. Sci. 163 (1985) 516.
- [9] B.A. Sexton, Surf. Sci. 102 (1981) 271.
- [10] I.E. Wachs and R.J. Madix, J. Catal. 53 (1978) 208.
- [11] C. Sudhakar and M.A. Vannice, J. Catal. 95 (1985) 227.
- [12] M.L. Poutsma, L.F. Elek, P.A. Ibaria, A.P. Risch, J.A. Rabo, J. Catal. 52 (1978) 157.