# SELECTIVE ISOPENTANE FORMATION FROM CH<sub>3</sub>OH ON A NEW ONE-ATOMIC LAYER ZrO<sub>2</sub>/ZSM-5 HYBRID CATALYST

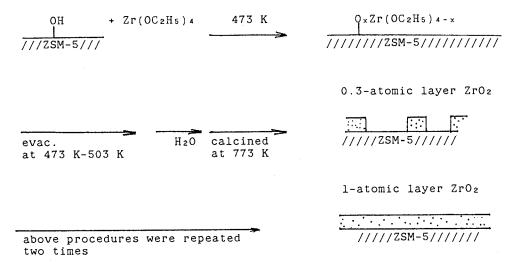
Kiyotaka ASAKURA, Mutsuto AOKI a, and Yasuhiro IWASAWA

Department of Chemistry, Faculty of Science, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

<sup>a</sup> Department of Chemistry, Faculty of Science, Tokyo Science University, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Received 12 August 1988; accepted 21 October 1988

A new one-atomic layer  $ZrO_2/ZSM-5$  hybrid catalyst was prepared by using the repeated reactions between  $Zr(OC_2H_5)_4$  and of the OH groups of the external surfaces of ZSM-5, followed by calcination. The one-atomic layer  $ZrO_2$  attached on the ZSM-5 surface was characterized by means of X-ray diffraction, X-ray fluorescence and EXAFS. The  $ZrO_2$  overlayer is suggested to epitaxially grow on the ZSM-5(001) plane in a [111] direction of tetragonal  $ZrO_2$ . The one-atomic layer  $ZrO_2/ZSM-5$  is a unique catalyst which produces selectively isopentane from  $CH_3OH$ .


#### 1. Introduction

ZSM-5 is known as a good MTG catalyst which yields mainly C<sub>5</sub>-C<sub>10</sub> hydrocarbons from methanol [1]. Methanol is also converted predominantly to C<sub>2</sub>-C<sub>4</sub> products on ZSM-5 when it is ion-exchanged with alkali earth metal, transition metal, boron or phosphorus [2]. While ZSM-5 itself and the modified ZSM-5 catalysts showed a sharp cutoff at  $C_{10}$  in hydrocarbon product distribution and a narrow C-number distribution, it is still difficult to selectively obtain a particular hydrocarbon from methanol. We have synthesized the ultrathin layers (one-three-atomic layers) of La<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, SiO<sub>2</sub> and Nb<sub>2</sub>O<sub>5</sub> which are chemically bound on ZSM-5 external surface [3] or SiO<sub>2</sub> surface [4][5]. The ultra-thin overlayer/support systems have been demonstrated to have unique catalyses entirely different from those of the corresponding physically-mixed catalysts because they possess new and unique structures, arrangements and coordinative unsaturation around active metal sites [3-5]. Thus one-atomic metal-oxide layers on suitable supports may provide potential preparations of a new class of catalysts. The characteristic catalysts may also give important information on the essential factors and properties closely related with catalysis. In this letter we report the preparation of a new ZrO<sub>2</sub> one-atomic overlayer/ZSM-5 hybrid catalyst, its characterization with EXAFS and the selective catalysis for methanol conversion to isopentane.

## 2. Preparation of a ZrO<sub>2</sub> one-atomic overlayer / ZSM-5 hybrid catalyst

The ZrO<sub>2</sub> one-atomic layer/ZSM-5 hybrid catalysts were prepared by taking advantage of the reaction between Zr(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub> and the OH groups of ZSM-5 external surface, followed by calcination as shown in scheme 1, similarly to the previously reported way [3,4]. Zr(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub> vapor (vapor pressure 133 Pa at 473 K) was interacted with the 473 K-pretreated ZSM-5(Toso Co.) at 473 K. Since the molecular size of the Zr(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub> was larger than the pore size (0.52 nm  $\times$  0.56 nm), Zr(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub> can react with the OH groups located at the external surface and thus it was expected to stay at the external surface. After the reaction, unreacted Zr(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub> was evacuated at 473 K and then the sample was heated to 503 K to complete the reaction. The sample was then exposed to water vapor at room temperature to convert the OC<sub>2</sub>H<sub>5</sub> ligands to OH groups, followed by calcination at 773 K in air. The loading of ZrO<sub>2</sub> in the sample thus obtained was determined by X-ray fluorescence by using several standard ZrO<sub>2</sub>/ZSM-5 samples with known amounts of ZrO2. The coverage of ZrO2 deposited by one attachment-reaction was estimated to be about 1/3 atomic layer where 1.7 wt%(Zr/ZSM-5) is denoted as one-atomic layer based on the external surface area of ZSM-5(15 m<sup>2</sup>/g and the ZrO<sub>2</sub> 2-dimensional unit cell size (0.13 nm<sup>2</sup>). Therefore, the above procedure was repeated to obtain the hybrid system covered with more amounts of ZrO<sub>2</sub>. As a result we obtained a full monolayer coverage of ZrO<sub>2</sub> (one-atomic layer ZrO<sub>2</sub>) by carrying out the attaching reaction by three times as shown in scheme 1.

The reduction of the pore size and volume of ZSM-5 was not observed after the three-times attachment treatments judging from the rates of adsorption of the toluene, o- and p-xylenes and the amounts of adsorbed pentane and benzene. No



Scheme 1. Preparation of one-atomic layer ZrO<sub>2</sub>.

X-ray diffraction (XRD) pattern corresponding to ZrO<sub>2</sub> crystal was observed with the one-atomic layer catalyst. In contrast, equal amount of ZrO<sub>2</sub> supported onto ZSM-5 by an impregnation method using ZrCl<sub>4</sub> aqueous solution showed the ZrO<sub>2</sub> XRD pattern.

### 3. Characterization

Zr K-edge EXAFS spectra were measured to obtain the information on the local structure around Zr atom in the overlayer [5]. Figure 1 shows the Fourier transforms of the EXAFS oscillation for ZSM-5-attached ZrO<sub>2</sub> catalysts together with those for monoclinic ZrO<sub>2</sub> [6] (purchased from Soekawa Co.) and tetragonal ZrO<sub>2</sub> [7,8] (prepared by calcination of Zr(OH)<sub>4</sub> at 773 K precipitated from Zr(NO<sub>3</sub>)<sub>2</sub>). Further analysis was carried out with the curve fitting techniques using the theoretical phase shift and amplitude functions [9]. The coordination numbers for ZrO and Zr–Zr bounds were obtained on the basis of the Nb–O bond in YNbO<sub>4</sub> and Zr–Zr bond in Zr metal, respectively. Table 1 shows the

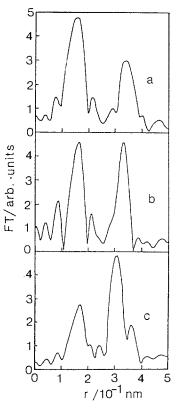



Fig. 1. Fourier transforms of Zr K-edge EXAFS of (a) 1-atomic layer ZrO<sub>2</sub> attached on ZSM-5, (b) tetragonal ZrO<sub>2</sub>, (c) monoclinic ZrO<sub>2</sub>.

| Table 1           |             |        |        |              |         |
|-------------------|-------------|--------|--------|--------------|---------|
| The curve fitting | analysis of | the Zr | K-edge | <b>EXAFS</b> | spectra |

|                  | Z              | r–O      | Zr-Z           | Zr        |
|------------------|----------------|----------|----------------|-----------|
|                  | $\overline{N}$ | r/nm     | $\overline{N}$ | r/nm      |
| $ZrO_2/ZSM5$     |                |          |                |           |
| 0.3 atomic       | 3.0(5)         | 0.206(3) | 3.0(7)         | 0.369(3)  |
| layer            |                |          |                |           |
| 0.7 atomic       | 3.5(5)         | 0.205(3) | 4.1(8)         | 0.369(3)  |
| layer            |                |          |                |           |
| 1.0 atomic       | 3.0(5)         | 0.206(3) | 3.1(7)         | 0.369(3)  |
| layer            |                | 1.704.00 |                |           |
| 2.0 atomic       | 3.0(5)         | 0.206(3) | 7.0(1.5)       | 0.366(3)  |
| layer            |                |          |                |           |
| $Zr/SiO_2$       |                |          |                |           |
| 0.5 atomic       | 3.5(4)         | 0.207(3) | 1.0(3)         | 0.347(3)  |
| layer            |                |          |                |           |
| ZrO <sub>2</sub> |                | - 4      |                |           |
| tetragonal       | 4.2(3)         | 0.207(3) | 7.2(1.5)       | 0.365(3)  |
| J                | (4             | 0.2065   | 12             | 0.3667) * |
| monoclinic       | 2.0(3)         | 0.214(3) | 6.8(1.0)       | 0.343(3)  |
|                  | (7             | 0.2159   | 7              | 0.3454) * |

Theoretical phase shift and amplitude functions were used.

curve fitting results of the hybrid catalysts. The bond distances for the standard samples (monoclinic and tetragonal ZrO<sub>2</sub>) derived from EXAFS agree with those determined from X-ray crystallography within the errors of 0.003 nm. The smaller coordination numbers derived from the EXAFS analysis might be due to the static disorder. The Zr-O and Zr-Zr bond lengths of one-atomic layer ZrO2 was close to those in tetragonal ZrO2 rather than the monoclinic ZrO2, indicating the formation of a tetragonal ZrO<sub>2</sub>-like structure. The bond distances in 0.3-, 0.7-, 1-atomic layers on ZSM-5 were almost the same. The coordination numbers for Zr-O and Zr-Zr bonds were observed to be  $3.2 \pm 0.3$  and  $3.5 \pm 0.6$ , respectively. These results suggest that the local structures similar to tetragonal ZrO<sub>2</sub> have already been formed at the 0.3 atomic layer supported on ZSM-5 external surface and the two-dimensional islands have grown to form the one-monolayer on ZSM-5 with an increase of ZrO<sub>2</sub> coverage. The Zr-Zr coordination number increased from 3.1 for the one-atomic layer ZrO<sub>2</sub>/ZSM-5 to 7.0 in the 2-atomic layer ZrO<sub>2</sub>/ZSM-5 a little less than that in the bulk ZrO<sub>2</sub>. In contrast to the < 1-atomic layer samples, the formation of 3-dimensional islands of ZrO2 is indicated with the 2-atomic layer ZrO<sub>2</sub>/ZSM-5. The Zr-Zr distance in the 0.3-1 atomic layer ZrO<sub>2</sub> was 0.004 nm longer than that in tetragonal ZrO<sub>2</sub> bulk, while the 2-atomic layer ZrO<sub>2</sub>/ZSM-5 showed almost the same distance as the bulk as shown in table 1. There are crystallographically two different types of Zr-Zr

<sup>\*</sup> The averaged values derived from X-ray crystallographical analysis.

distances in the ZrO<sub>2</sub> tetragonal crystal. One is 0.364 nm along [100] direction and the other is 0.368 nm along [111] direction. The Zr–Zr distance observed in the 1-atomic layer ZrO<sub>2</sub> agrees with the distance in a [111] direction of tetragonal ZrO<sub>2</sub> crystal. Thus the Zr–Zr bonding is suggested to be formed along the [111] direction on the ZSM-5 external surface. After the completion of the full monolayer of ZrO<sub>2</sub>, the three dimensional ZrO<sub>2</sub> islands grow on the one atomic layer ZrO<sub>2</sub>. On the other hand, the structure of one-atomic layer ZrO<sub>2</sub> supported on SiO<sub>2</sub> prepared in the similar way was more similar to monoclinic ZrO<sub>2</sub> structure because Zr–O and Zr–Zr distances were close to those of monoclinic ZrO<sub>2</sub> rather than those of tetragonal one as shown by the EXAFS analysis. As a result, on the ZSM-5 external surface the ZrO<sub>2</sub> one-atomic layer may grow epitaxicially in a [111] direction of tetragonal ZrO<sub>2</sub>, where the formation of three-dimensional ZrO<sub>2</sub> islands/particles was not observed below a monolayer coverage of ZrO<sub>2</sub>.

#### 4. Selective conversion of methanol to isopentane

The catalytic properties of the 1-atomic layer ZrO<sub>2</sub> attached on ZSM-5 for methanol conversion were examined in a stainless-steel flow system using 1 g of catalyst at 1 and 10 atm. The samples were oxidized at 773 K for 2 h in a flow of dry air and cooled to reaction temperatures under Ar atmosphere. CH<sub>3</sub>OH was fed into an Ar flow by a micro-pump and the Ar/CH<sub>3</sub>OH ratio in gas volume was controlled to be 2 or 16. The products were analyzed by gas chromatography. Table 2 shows the activities and selectivities of the ZSM-5-attached ZrO<sub>2</sub> catalysts for CH<sub>3</sub>OH conversion reactions at 1 atm. C<sub>5</sub> hydrocarbons were found to be selectively produced (88.9%) at 623 K on the 1-atomic layer ZrO<sub>2</sub>/ZSM-5 catalyst more than 95% of which was isopentane. Under the similar reaction conditions ZSM-5 produced hydrocarbons with a variety of carbon numbers. The 2-atomic layer ZrO<sub>2</sub>/ZSM-5 showed a higher conversion rate compared with the 1-atomic layer  $ZrO_2/ZSM$ -5, but the selectively toward  $C_5$  products was much low and the product distribution was broad similarly to that observed for ZSM-5 itself. The  $C_5$  selectively decreased with an increase of the total pressure; at 10 atm, 19.6% (573 K) and 8.2% (623 K) as shown in table 3. Under 10 atm conditions, p-xylene was favorately formed (selec. 21.8% at 623 K) on 1-atomic layer ZrO<sub>2</sub>/ZSM-5 than on ZSM-5 (12%). The relatively high selectivity for p-xylene formation was also found in the 2-atomic layer ZrO<sub>2</sub>/ZSM-5 (22.6% at 673 K). On the other hand, the 1-atomic layer  $ZrO_2/SiO_2$  prepared in a similar way to the  $ZrO_2/ZSM$ -5 catalyst showed no catalytic activity for CH<sub>3</sub>OH conversion under similar reaction conditions. The 3-atomic layer SiO<sub>2</sub>/ZSM-5 was also tested at 1 atm; the catalyst was prepared by the interaction between the CH<sub>3</sub>Si (OC<sub>2</sub>H<sub>5</sub>)<sub>3</sub> and the external surface OH of ZSM-5 followed by calcination as previously reported [3].

Table 2 The methanol conversion reaction product distributions (total pressure =1 atm)

|                                        | T/K | СН3ОН   |       |      |      |      |      | Sel | Selectivity/%                  |     |                          |                     |          |
|----------------------------------------|-----|---------|-------|------|------|------|------|-----|--------------------------------|-----|--------------------------|---------------------|----------|
|                                        |     | conv./% | $C_2$ | ئ    | ე*   | ڻ    | ګ    | Свн | C <sub>6</sub> H <sub>12</sub> |     | ArMe p-ArMe <sub>2</sub> | o-ArMe <sub>2</sub> | $Ar_8^+$ |
| 1-atomic layer                         | 573 | 10.5    | 3.9   | 2.8  | 0.0  | 6.88 | 3.0  | 0.0 | 0.0                            | 0.0 | 0.1                      | 0.7                 | 0.5      |
| $ZrO_2/ZSM-5$ 623                      | 623 | 13.8    | 8.4   | 10.6 | 0.0  | 73.5 | 0.0  | 0.0 | 0.0                            | 0.0 | 1.7                      | 0.3                 | 5.6      |
| 2-atomic layer $ZrO_2/ZSM-5$           | 623 | 30.7    | 11.5  | 16.0 | 11.8 | 13.5 | 8.2  | 0.7 | 8.0                            | 3.8 | 16.6                     | 4.2                 | 14.8     |
| 3-atomic layer SiO <sub>2</sub> /ZSM-5 | 573 | 42.2    | 11.0  | 16.5 | 0.0  | 14.4 | 12.0 | 8.0 | 0.7                            | 3.0 | 16.1                     | 3.8                 | 24.3     |
| ZSM-5                                  | 573 | 25.2    | 17.1  | 28.3 | 0.0  | 13.4 | 8.6  | 1.0 | 6.0                            | 3.7 | 14.1                     | 4.0                 | 15.0     |

Reaction conditions: The catalyst = 1 g, P = 1 atm,  $Ar/CH_3OH = 2$ , W/F = 310 g min mol<sup>-1</sup>.

Table 3 The methanol conversion reaction product distribution (total pressure = 10 atm)

|                         | 7/K C | СН3ОН   |      |      |      |      |      | Sei | Selectivity/%                  |      |                     |                     |          |
|-------------------------|-------|---------|------|------|------|------|------|-----|--------------------------------|------|---------------------|---------------------|----------|
|                         |       | conv./% | ر    | ౮    | رځ   | ౮    | ౮    | Св  | C <sub>6</sub> H <sub>12</sub> | ArMe | p-ArMe <sub>2</sub> | o-ArMe <sub>2</sub> | $Ar_8^+$ |
| 1-atomic layer 573      | 573   | 35.6    | 11.7 | 21.6 | 11.8 | 19.6 | 15.3 | 4.5 | 1.6                            | 2.9  | 4.4                 | 1.4                 | 5.2      |
| ZrO <sub>2</sub> /ZSM-5 | 623   | 2.09    | 9.6  | 21.5 | 16.7 | 8.2  | 2.7  | 0.0 | 0.0                            | 3.5  | 21.8                | 5.7                 | 14.2     |
| 2-atomic layer          | 570   | 45.3    | 11.8 | 21.7 | 11.7 | 21.4 | 17.3 | 4.0 | 1.6                            | 2.2  | 3.4                 | 1.3                 | 3.6      |
| ZrO <sub>2</sub> /ZSM-5 | 673   | 85.3    | 9.4  | 36.0 | 1.8  | 9.4  | 5.9  | 1.4 | 0.0                            | 5.0  | 22.6                | 4.0                 | 4.2      |
| 3-atomic layer          | 623   | 83.5    | 5.0  | 15.6 | 17.2 | 11.2 | 7.5  | 0.3 | 0.3                            | 4.9  | 16.4                | 3.8                 | 17.7     |
| $SiO_2/ZSM-5$           | 653   | 100.0   | 4.8  | 19.1 | 18.6 | 10.3 | 6.4  | 0.1 | 0.0                            | 5.7  | 15.9                | 3.2                 | 15.9     |
| ZSM-5                   | 653   | 43.9    | 11.7 | 30.4 | 12.4 | 12.5 | 3.4  | 0.2 | 0.3                            | 1.0  | 14.6                | 2.4                 | 11.1     |
|                         | 673   | 56.8    | 15.8 | 33.6 | 9.6  | 4.9  | 4.6  | 0.4 | 0.3                            | 4.0  | 10.2                | 1.6                 | 15.0     |

Reaction conditions: The catalyst = 1 g, P = 10 atm,  $Ar/CH_3OH = 16$ , W/F = 54.9 g min mol<sup>-1</sup>.

Table 4 The activity and selectivity of the CO hydrogenation reaction

|                           | 7/K CO | 00      | Total       |                 |          | hyc      | drocarbo          | ons selecti                   | vity/%   |       | an agus        | CO2  | (CH <sub>3</sub> ) <sub>2</sub> O |
|---------------------------|--------|---------|-------------|-----------------|----------|----------|-------------------|-------------------------------|----------|-------|----------------|------|-----------------------------------|
| •.                        |        | conv./% | hydrocarbon | CH <sub>4</sub> | $C_2H_4$ | $C_2H_6$ | $C_3H_{\epsilon}$ | C <sub>3</sub> H <sub>8</sub> | $C_4H_8$ | C4H10 | Ç <sup>‡</sup> |      |                                   |
| 0.7-atomic layer 573 0.07 | 573    | 0.07    | 100         | 61.7            | 14.1     | 3.9      | 9.4               | 3.1                           | 7.8      | 0.0   | 0.0            | 0.0  | 0.0                               |
| $ZrO_2/ZSM-5$             | 623 0. | 0.13    | 100         | 61.4            | 10.9     | 7.0      | 9.2               | 3.9                           | 4.9      | 0.0   | 0.0            | 0.0  | 0.0                               |
|                           | 673    | 0.23    | 100         | 62.6            | 10.4     | 10.2     | 8.5               | 3.6                           | 3.3      | 0.0   | 1.4            | 0.0  | 0.0                               |
| 1-atomic layer            | 603    | 0.04    | 6.79        | 72.8            | 11.9     | 5.1      | 8.9               | 3.4                           | 0.0      | 0.0   | 0.0            | 32.1 | 0.0                               |
| $ZrO_2/ZSM-5$             | 543    | 0.15    | 75.1        | 35.1            | 10.7     | 3.7      | 6.6               | 1.6                           | 21.7     | 9.0   | 16.7 a         | 24.7 | 0.2                               |
|                           | 673    | 0.31    | 74.3        | 49.5            | 15.9     | 3.2      | 9.3               | 1.5                           | 17.2     | 0.5   | 3.0            | 25.5 | 0.2                               |
| 2-atomic layer            | 543    | 0.11    | 65.4        | 63.3            | 16.0     | 3.1      | 13.7              | 3.1                           | 8.0      | 0.0   | 0.0            | 34.4 | 0.2                               |
| $ZrO_2/ZSM-5$             | 593    | 0.40    | 65.1        | 61.5            | 11.3     | 9.7      | 10.4              | 2.8                           | 5.1      | 1.3   | 0.0            | 34.7 | 0.2                               |
|                           | 643    | 0.59    | 68.3        | 2.09            | 13.4     | 6.6      | 11.1              | 2.7                           | 2.1      | 0.1   | 0.0            | 31.6 | 0.1                               |

<sup>a</sup>  $C_5H_{10} = 4.7\%$ ,  $C_5H_{12} = 5.7\%$ ,  $C_6^+ = 6.3\%$ .

This sample depicted a similar selectivity to that of ZSM-5 though the external SiO<sub>2</sub> layer enhanced the overall reaction rate as shown in table 2.

The unique feature of the 1-atomic layer  $ZrO_2/ZSM$ -5 catalyst in product distribution was also observed in CO hydrogenation. Table 4 shows a high selectively toward  $C_4H_8$  hydrocarbons (mainly isobutene) on the 1-atomic layer  $ZrO_2/ZSM$ -5, whereas no interesting product distribution was observed with the 2-atomic layer  $ZrO_2/ZSM$ -5.  $ZrO_2$  itself has been known to be a catalyst for isosynthesis from  $CO + H_2$  [10]; the reaction was accompanied by the formation of a large amount of  $CO_2$ . The  $CO_2$  formation was suppressed on the 1-atomic layer  $ZrO_2/ZSM$ -5 catalyst which produced mainly hydrocarbons.

The detailed reaction mechanism for the selective formation of isopentane from CH<sub>3</sub>OH on the 1-atomic layer ZrO<sub>2</sub>/ZSM-5 catalyst is not clear at present, but the specific catalysis must be correlated with the chemical hybrid environments composed of the 1-atomic layer of ZrO<sub>2</sub> and the acidic cavity of ZSM-5. As mentioned before, one-atomic layer of ZrO<sub>2</sub> grows epitaxially on the ZSM-5(001) plane in a [111] direction of tetragonal-like ZrO<sub>2</sub>. In an alternative view the coordinatively unsaturated, active [111] plane of tetragonal ZrO<sub>2</sub> may be produced by the misfit between the ZrO<sub>2</sub> overlayer and ZSM-5 external surface and stabilized on the external surface of ZSM-5 by forming the Zr-O-Si (ZSM-5 surface) bonds. The one atomic layer ZrO<sub>2</sub>/ZSM-5 hybrid catalyst is possible to generate a unique reaction environment for multifunctional catalysis which is hardly observed with physically-mixed hybrid samples and traditionally-prepared catalysts.

#### References

- S.L. Meisel, J.P. McCullough, C.H. Lechtler and P.B. Weisz, Chemtech. 6 (1986) 86;
   F.R. Fibeiro, A.E. Rodrigues, L.D. Rollmenn and C. Naccach, eds., Zeolites: Science and Technology, Nato ASI SER. (Martinus Nijhoff Publishers, 1984).
- [2] R.J. Mcintosh and D. Sedden, Appl. Catal. 6 (1983) 307;
  Tokkaisho, 51-57688; ibid., 59-82319; D.P., 2909927 A1;
  W.W. Kaeding and S.A. Butter, J. Catal. 61 (1980) 1551;
  W.W. Kaeding, L.B. Young and C. Chu, J. Catal. 89 (1984) 267.
- [3] A. Kase, K. Asakura, C. Egawa and Y. Iwasawa, Chem. Lett. (1986) 855.
- [4] K. Asakura and Y. Iwasawa, Chem. Lett. (1986) 859.
- [5] K. Asakura and Y. Iwasawa, Chem. Lett. (1988) 633.
- [6] G. Teufer, Acta Cryst. 15 (1962) 1187.
- [7] J.D. McCullough and K.N. Trueblood, Acta Cryst. 12 (1959) 507.
- [8] D.K. Smith and H.W. Newkirk, Acta Cryst. 18 (1965) 983.
- [9] B.K. Teo, EXAFS: Basic Principles and Data Analysis (Springer-Verlag, Berlin, 1986);
   K. Asakura, Doctor Thesis, the University of Tokyo, 1987.
- [10] H. Pichler and K.-H. Ziesecke, Bur. Mines Bull. (1950) 448;
   T. Maehashi, K.-I. Maaruya, K. Domen, K.-I. Aika and T. Onishi, Chem. Lett. (1984) 747.