# ELECTROCHEMICAL ENHANCEMENT OF OXIDATIVE COUPLING OF METHANE OVER LICI-DOPED NIO USING STABILIZED ZIRCONIA ELECTROLYTE

# Kyoshi OTSUKA, Katsuo SUGA and Ichiro YAMANAKA

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan

Received 22 August 1988; accepted 25 October 1988

Oxidative coupling of methane into ethylene and ethane over LiCl-doped NiO was enhanced when oxygen was pumped electrochemically to the catalyst through a stabilized zirconia oxygen-anion conductor. This favourable effect can be ascribed to the generation of reactive oxygen species on the catalyst for selective synthesis of  $C_2$  compounds.

### 1. Introduction

Partial oxidation of methane into higher hydrocarbons is one of the most attractive ways of utilizing natural gas as a chemical resource. Oxidative coupling of methane to  $C_2H_6$  and  $C_2H_4$  is currently the subject of considerable research interest [1]. We have found that the LiCl-doped NiO (denoted as LiCl/NiO hereafter) is a selective catalyst for this reaction [2,3]. NiO without LiCl catalyzes only the deep oxidation of methane to CO and  $CO_2$ . Addition of LiCl, however, inhibits the catalytic activity of the host NiO in the conversion of methane, particularly the deep oxidations of  $CH_4$ , and  $C_2$  compounds are produced. Although the added LiCl improves the  $C_2$  selectivity, the catalytic activity for  $C_2$  formation is not satisfactory.

The application of an electrochemical technique utilizing a stabilized zirconia solid electrolyte to the partial oxidation of hydrocarbons was first demonstrated by Stoukides and Vayenas [4]. Otsuka et al. [5] have applied this technique to the partial oxidation of methane over the Ag- or  ${\rm Bi}_2{\rm O}_3/{\rm Ag}$ -deposited zirconia electrolyte. The reaction rate and the selectivity to  ${\rm C}_2$ -compounds ( ${\rm C}_2{\rm H}_6+{\rm C}_2{\rm H}_4$ ) could be controlled by the flux of oxygen electrochemically pumped through the zirconia electrolyte. In this letter, we describe the application of this technique to the oxidative coupling of methane over LiCl/NiO in order to improve the selectivity and the catalytic activity of the catalyst for the synthesis of  ${\rm C}_2$ -compounds.

# 2. Experimental

Yttria-stabilized zirconia plates  $(20 \times 14 \times 0.4 \text{ mm}^3)$  obtained from Nippon Kagaku Togyo were used in the experiments. Fine NiO powder obtained from Wako Pure Chemical company was immersed into the aqueous solution of LiCl. The solution with NiO was dried at 373 K and 673 K for 2 h. The mol ratio of LiCl and NiO was adjusted to 1:5. The LiCl-doped NiO was finally calcined in air at 973 K for 2 h, and the LiCl/NiO powder thus prepared was suspended in acetone. This catalyst suspension was spread onto one of the Au-electrodes which had been deposited on both sides of the zirconia plate by a vapour deposition technique. The catalyst with acetone on the Au-electrodes was dried at 433 K and calcined in the flow of mixture of He and O2 (4:1) at 973 K for 2 h.

The catalytic tests of the LiCl/NiO for partial oxidation of CH<sub>4</sub> were carried out using a conventional gas-flow system under atmospheric pressure using helium as a carrier gas. Flow rate of the gas mixture were in the range of 20 to 50  $mISTP min^{-1}$ .

The catalyst-deposited zirconia plate was suspended in a flow of the gas mixture of methane and oxygen as demonstrated in fig. 1. Under open circuit conditions LiCl/NiO acted as a regular catalyst for oxidative coupling of methane. Under externally applied voltage between the two electrodes, O<sup>2-</sup> is pumped through the zirconia electrolyte to or from the catalyst depending on the polarity of the applied potential.

The conversion of CH<sub>4</sub> and the selectivities of products were calculated on the basis of carbon number of the methane reacted.

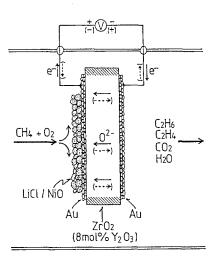



Fig. 1. Schematic diagram of the electrochemical control of the partial oxidation of CH<sub>4</sub> using the LiCl/NiO catalyst on he Au-deposited stabilized zirconia.

### 3. Results

# (a) EFFECT OF O<sup>2-</sup> PUMPING

Figure 2 shows the formation rates of products, O<sub>2</sub> conversion and C<sub>2</sub> selectivity  $(C_2H_6 + C_2H_4)$  as functions of the current, the corresponding externally applied voltages are also shown. Deactivation of the catalyst probably due to the loss of LiCl [3], was serious at the early stage of the reaction at higher temperatures than 973 K, but constant activity was observed after 3 h. Steady state results were obtained within 20 min after changing the current (or applied voltage) from one steady value to the other. Positive current in fig. 2 means that  $O^{2-}$  is pumped from the right side of zirconia to the catalyst in fig. 1, and negative current involves the pumping from the catalyst to the right. The results in fig. 2 show that the oxygen pumping to the catalyst increases the formation rates of  $C_2H_6$  and C<sub>2</sub>H<sub>4</sub> and favorably decreases the rate of CO<sub>2</sub> formation, thus improving the C<sub>2</sub> selectivity up to 92% at the current of +80 mA. On the other hand, the oxygen pumping from the catalyst to the other side of the zirconia plate did not change appreciably the formation rates of the products from those observed under open circuit conditions. When the current was lowered below -30 mA (applied voltage < -0.7 V), the catalyst became unstable and the catalytic results were irreproducible.

The conversion of both oxygen and methane is increased with a rise in the flux of oxygen pumped to the catalyst. The increase in the amount of oxygen consumed under closed circuit conditions can be estimated from the difference in

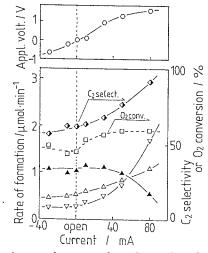



Fig. 2. Effects of oxygen pumping on the rates of products,  $C_2$  selectivity and  $O_2$  conversion.  $\bigcirc$ , applied voltage;  $\triangle$ , rate of  $C_2H_6$  formation;  $\nabla$ , rate of  $C_2H_4$  formation;  $\triangle$ , rate of  $CO_2$  formation;  $\bigcirc$ ,  $O_2$  conversion;  $\bigcirc$ ,  $O_2$  selectivity. Reaction conditions: T = 973 K,  $P(CH_4) = 15$  kPa,  $P(O_2) = 0.52$  kPa, total flow rate = 20 mlSTP min<sup>-1</sup>, weight of LiCl/NiO = 0.10 g.

the oxygen conversions under closed and open circuit conditions (fig. 2). If the increase in the consumption of oxygen is due wholly to the reaction of the pumped oxygen to the catalyst with methane, it follows that 22% and 5% of the oxygen pumped were used in the reaction at the constant current of +10 and +80 mA, respectively, in fig. 2. The current efficiency of the pumped oxygen used in the reaction was not high.

The Au-electrodes on the zirconia without the LiCl/NiO catalyzed only a slow deep oxidation of CH<sub>4</sub> irrespective of the open or the closed circuit conditions. The absolute rate of this reaction was less than 5% of that observed in the presence of the LiCl/NiO at any temperatures.

## (b) EFFECT OF REACTANT PRESSURE

The rates of  $CO_2$  and  $C_2$  formations and the  $C_2$  selectivity observed at 913 K under open and closed circuit ( $O^{2-}$  pumping of +20 mA) conditions are plotted against  $CH_4$  pressure in fig. 3. The  $C_2$  selectivity increased with a rise in the  $CH_4$  pressure irrespective of open and closed circuit conditions. However, this increase was relatively larger under closed circuit conditions compared to that observed under open circuit.

Figure 4 shows the effects of oxygen pressure on the selectivities and the formation rates of products observed under open and closed circuit conditions. The results in the figure show that the favorable effect of oxygen pumping to the catalyst with +20 mA constant current is enhanced with a decrease in the pressure of oxygen, i.e., the increase and the decrease in the formation rates of  $C_2$ 

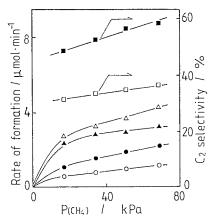



Fig. 3. Effects of CH<sub>4</sub> pressure on the rates of C<sub>2</sub> formation and C<sub>2</sub> selectivity under open and closed circuit conditions. Open circuit:  $\bigcirc$ , rate of C<sub>2</sub> formation;  $\triangle$ , rate of CO<sub>2</sub> formation;  $\square$ , C<sub>2</sub> selectivity. Closed circuit with +20 mA current:  $\bullet$ , rate of C<sub>2</sub> formation;  $\blacktriangle$ , rate of CO<sub>2</sub> formation;  $\blacksquare$ , C<sub>2</sub> selectivity. Reaction conditions: T = 913 K,  $P(O_2) = 10.1$  kPa, total flow rate = 30 mlSTP min<sup>-1</sup>, LiCl/NiO = 0.12 g.

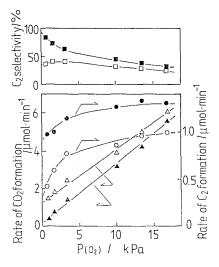



Fig. 4. Effects of  $O_2$  pressure on the rates of  $C_2$  and  $CO_2$  formations and on the  $C_2$  selectivity under open and closed circuit conditions. The meanings of the symbols are the same as those in fig. 3. Reaction conditions: T = 913 K,  $P(CH_4) = 33.7$  kPa, total flow rate = 30 mlSTP min<sup>-1</sup>, LiCl/NiO = 0.19 g.

and  $CO_2$ , respectively, were promoted at the low pressure range of oxygen, improving the  $C_2$  selectivity.

### (c) TEMPERATURE EFFECT ON THE FORMATION RATES OF PRODUCTS

Figure 5 shows the plot of logarithm of formation rates (R) of  $C_2$  and  $CO_2$  against inverse of temperature. The apparent activation energies calculated from the slopes of the lines in fig. 5 are as follows: for  $CO_2$  formation, 114 (open) and

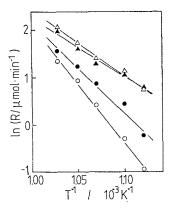



Fig. 5. Temperature effects on the formation rates of products measured under open and closed circuit conditions. Open circuit:  $\bigcirc$ ,  $C_2$  formation;  $\triangle$ ,  $CO_2$  formation. Closed circuit with +20 mA current;  $\blacksquare$ ,  $C_2$  formation;  $\triangle$ ,  $CO_2$  formation. Reaction conditions:  $P(CH_4) = 33.7$  kPa,  $P(O_2) = 10.1$  kPa, total flow rate = 30 mlSTP min<sup>-1</sup>, LiCl/NiO = 0.10 g.

101 kJ mol<sup>-1</sup> ( $O^2$  pumping at +20 mA current); for  $C_2$  formation, 208 (open) and 154 kJ mol<sup>-1</sup> (+20 mA current). These observations show that the oxygen pumping decreases the apparent activation energy in the formation of  $C_2$  compounds appreciably compared to the effect of the pumping on the activation energy of  $CO_2$  formation.

# 4. Discussion

The results in figs. 2 to 4 showed that the  $O^{2-}$  pumping to the LiCl/NiO enhances the formation rate of  $C_2$  compounds and reduces  $CO_2$  formation. The  $O^{2-}$  pumping decreases the apparent activation energy for the  $C_2$  formation considerably (fig. 5). These observations may be explained by the assumption that the  $O^{2-}$  pumped through the zirconia generates reactive oxygen species ( $O^*$ ) for selective synthesis of  $C_2$  compounds on the LiCl/NiO surface. This active oxygen may adsorb competitively with the oxygen responsible for deep oxidation of  $CH_4$  on the same sites, which explains the observation that the  $O^{2-}$  pumping reduces the  $CO_2$  formation. The activation energy for the abstraction of H from  $CH_4$  by the electrochemically generated oxygen ( $O^*$ ) must be smaller than that by the oxygen responsible for the activation of  $CH_4$  under open circuit conditions. However, it is premature to speculate upon the nature of the  $O^*$  species from the present work alone.

We cannot exclude the alternative explanation that the favorable effect of the oxygen pumping is ascribable to the change in the oxidation state of the catalyst under externally applied potential. The number of active sites (probably Ni<sup>3+</sup> [3]) could be increased under applied potential. Further studies are needed to clarify these points.

The method demonstrated in this work is simple and generally applicable for enhancing the catalytic, partial oxidation of methane using a conventional gas flow system.

# References

- [1] M. Baerns, Catal. Today 1 (1987) 357;
  - K. Otsuka, Sekiyu gakkaishi 30 (1987) 385;
  - W. Ueda and J.M. Thomas, J. Chem. Soc. Chem. Comm. (1988) 1145; and the references therein.
- [2] K. Otsuka, Q. Liu, M. Hatano and A. Morikawa, Chem. Lett. (1986) 903.
- [3] K. Otsuka, M. Hatano and T. Komatsu, Catal. Today (1988) in press.
- [4] M. Stoukides and C.G. Vayenas, J. Catal. 70 (1981) 137.
- [5] K. Otsuka, S. Yokoyama and A. Morikawa, Chem. Lett. (1985) 319.