# THE IMPORTANCE OF HETEROGENEOUS AND HOMOGENEOUS REACTIONS IN OXIDATIVE COUPLING OF METHANE OVER CHLORIDE PROMOTED OXIDE CATALYSTS

## R. BURCH \*, E.M. CRABB, G.D. SQUIRE and S.C. TSANG

Catalysis Research Group, Chemistry Department, University of Reading Whiteknights, P.O. Box 224, Reading RG6 2AD, U.K.

Received 19 January 1989; accepted 6 March 1989

The formation of ethene from ethane and methane in a silica reactor has been studied both in the presence and in the absence of chloride-containing catalysts. Some homogeneous conversion of ethane to ethene occurs in the gas phase through direct dehydrogenation, oxidative dehydrogenation, and, when HCl is present, chlorine radical induced reactions. Methyl chloride is detected in the gas phase but has no influence on the conversion of ethane to ethene. It is shown that under typical catalytic conditions, when a chloride-modified catalyst is used, ethane is mostly produced in the catalyst bed.

#### 1. Introduction

Oxidative coupling of methane is emerging as one of the most promising forms of hydrocarbon oxidation, with the real potential of becoming an important industrial process [1]. Many metal oxides [2], alkali-promoted metal oxides [3,4] and mixed metal oxides [5] are claimed to be effective catalysts for converting methane to higher hydrocarbons, principly ethane and ethene. Most effort has been concentrated on optimizing the *total*  $C_2$  selectivity even though ethene is more valuable than ethane. It has been reported, however, that the highest selectivity to ethene is achieved when chloride ions are present in the oxide catalyst [6–9], or if a chlorine-containing compound is introduced into the gas stream during the reaction [10,11].

The mechanism of ethene formation is unknown. However, it has been reported [7] that CH<sub>3</sub>Cl is released into the gas phase from chloride-promoted catalysts. This CH<sub>3</sub>Cl is believed [7] to catalyse the homogeneous reaction for the formation of ethene from ethane. It is important to establish whether the enhancement of ethene formation in the presence of chlorine is due to homogeneous gas phase reactions or to surface-catalysed reactions. This question is addressed in the present work.

<sup>\*</sup> To whom all correspondence should be addressed.

## 2. Experimental

The experiments were performed by cofeeding reactive gases into a 5 mm I.D, 26 cm long silica tube reactor. Although most of the current work was done using an empty reactor, for comparison a LiCl/MnO<sub>2</sub> catalyst was prepared as before [10] and tested. (For simplicity the catalyst is referred to as LiCl/MnO<sub>2</sub> even though the oxygen content is not known precisely.), The gases used were: CH<sub>4</sub> (B.O.C. > 99.99%); C<sub>2</sub>H<sub>6</sub> (B.O.C. > 99%); C<sub>2</sub>H<sub>6</sub> in CH<sub>4</sub> (B.O.C. 5%C<sub>2</sub>H<sub>6</sub>/95%CH<sub>4</sub>); N<sub>2</sub> (B.O.C. > 99%); O<sub>2</sub> in N<sub>2</sub> (B.O.C. 5%O<sub>2</sub>/95%N<sub>2</sub>); CH<sub>3</sub>Cl (B.D.H. > 99.8%); HCl (B.D.H. > 99%). The reaction products were sampled using a gas sampling valve and analysed by gas chromatography (Perkin Elmer Sigma 3 FID, fitted with a 4 m Poropak N column operating at 65°C). Analysis of CO and CO<sub>2</sub> was made possible by incorporating a catalytic methanator into the gas chromatograph just before the detector. A quadrupole mass spectrometer (Spectramass Dataquad) was used to analyze the chlorine-containing products.

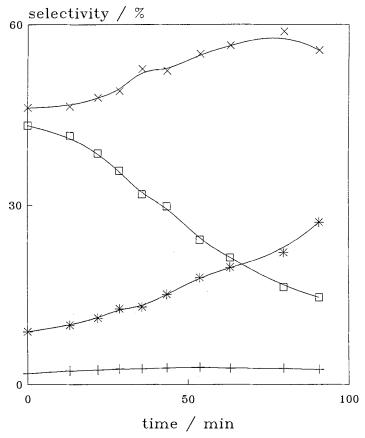



Fig. 1. Selectivity to  $C_2H_6$  ( $\times$ ),  $C_2H_4$  ( $\square$ ), CO (+), and CO<sub>2</sub> (\*) as a function of time for the conversion of CH<sub>4</sub> over a LiCl/MnO<sub>2</sub> catalyst.

It is well known [12] that gas phase reactions between  $CH_4$  and  $O_2$  are important under certain experimental conditions (e.g. low  $CH_4/O_2$  ratio, low dilution factor, high residence time and high temperatures). In order to minimise gas phase reactions in our work the  $CH_4$  and  $O_2$  were diluted with  $N_2$  and the  $CH_4/O_2$  ratio was adjusted to 20:1 (50%  $CH_4/47.5\%$   $N_2/2.5\%$   $O_2$ , total gas flow was 60 cm<sup>3</sup> min<sup>-1</sup>). It was found that under these conditions there was less than 0.1% conversion of the  $CH_4$  in an empty reactor even at 800 ° C.

#### 3. Results and discussion

The LiCl/MnO<sub>2</sub> catalyst was tested under our experimental conditions. It was found that promotion of MnO<sub>2</sub> by LiCl at 750 °C produced a very active catalyst with a C<sub>2</sub> selectivity of 88.3% (C<sub>2</sub>H<sub>4</sub> was 43.2%). However, this activity was not maintained and the catalyst deactivated during the first 2 h on stream as shown in fig. 1. Note that the  $C_2H_4/C_2H_6$  ratio decreased as the catalyst became

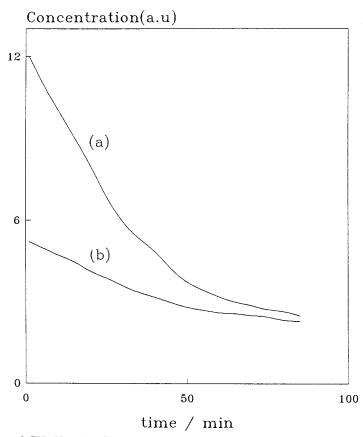



Fig. 2. Evolution of  $CH_3Cl$  and HCl as a function of time from a  $LiCl/MnO_2$  catalyst during the reaction of  $CH_4$  at 750 ° C. (a)  $CH_3Cl$ ; (b) HCl.

deactivated. Chlorinated compounds, mainly  $CH_3Cl$  and HCl, were detected in the product gases. The amount of  $CH_3Cl$  and HCl detected decreased in line with the decrease in the  $C_2H_4/C_2H_6$  ratio, as shown in fig. 2.

These observations are in agreement with the findings of Otsuka et al. [7], who have interpreted their results in terms of the following homogeneous reactions:

$$4 \text{ CH}_4 + \text{O}_2 \xrightarrow{\text{Li}/\text{MnO}_2} 2 \text{ C}_2 \text{H}_6 + 2 \text{ H}_2 \text{O}$$

$$\frac{1}{2} \text{O}_2 + \text{LiCl} + \text{CH}_4 \rightarrow \text{CH}_3 \text{Cl} + \text{LiOH}$$

$$\text{CH}_3 \text{Cl} \rightarrow \text{CH}_3 \cdot + \text{Cl} \cdot$$

$$\text{C}_2 \text{H}_6 + \text{Cl} \cdot \rightarrow \text{C}_2 \text{H}_5 \cdot + \text{HCl}$$

$$\text{C}_2 \text{H}_5 \cdot \rightarrow \text{C}_2 \text{H}_4 + \text{H} \cdot$$

$$\text{HCl} + \text{H} \cdot \rightarrow \text{H}_2 + \text{Cl} \cdot$$

$$\text{HCl} + \text{CH}_3 \cdot \rightarrow \text{CH}_4 + \text{Cl} \cdot$$

According to this mechanism chlorine radicals formed from CH<sub>3</sub>Cl are responsible for the dehydrogenation of C<sub>2</sub>H<sub>6</sub>. However, under our experimental conditions the concentration of CH<sub>3</sub>Cl was found to be less than 100 ppm and it seemed unlikely that such a small amount of CH<sub>3</sub>Cl could account for the high rate of formation of C<sub>2</sub>H<sub>4</sub> observed in our experiments. In the course of investigating the role of CH<sub>3</sub>Cl in the formation of C<sub>2</sub>H<sub>4</sub> we observed that other gas phase reactions may also be of importance. These experiments are now described.

# 3.1. GAS PHASE REACTIONS IN THE FORMATION OF ETHENE FROM ETHANE ADDITION OF $\mathrm{CH_3Cl}$

Table 1 summarises the results obtained when various gases were passed through the empty silica reactor at reaction temperatures. The results show that pure  $C_2H_6$  can be dehydrogenated to  $C_2H_4$  even at these relatively low temperatures in a silica reactor. (Thermal cracking of  $C_2H_6$  is normally performed in a steel reactor at much higher temperatures.) Thus, at 750°C about 12% of the  $C_2H_6$  is converted into  $C_2H_4$  with a selectivity of over 97%.

When the  $C_2H_6$  is mixed with a  $N_2/O_2$  stream the selectivity to  $C_2H_4$  is somewhat lower but the activity is much higher. It is apparent that in the presence of a small amount of  $O_2$ , such as would be present in the post-catalyst gas volume in a typical methane activation experiment, there can be a substantial homogeneous conversion of  $C_2H_6$  to  $C_2H_4$ . These results are consistent with those reported by van Kasteren et al. [13].

The most significant observation in table 1 is that the addition of  $CH_3Cl$  has no effect on the formation of  $C_2H_4$  from  $C_2H_6$ .  $CH_3Cl$  is *not* responsible for the high selectivity to  $C_2H_4$  observed over chloride-containing catalysts. In this

| Table 1                                                         |      |
|-----------------------------------------------------------------|------|
| Non-catalytic dehydrogenation of ethane in an empty silica reac | tor. |

| Gas mixture                         | T/°C | C/% a               | Selectivity/% <sup>b</sup> |                 |                |                |                |     |
|-------------------------------------|------|---------------------|----------------------------|-----------------|----------------|----------------|----------------|-----|
|                                     |      | $\overline{C_2H_4}$ | CO                         | CO <sub>2</sub> | C <sub>1</sub> | C <sub>3</sub> | C <sub>4</sub> |     |
| 100% C <sub>2</sub> H <sub>6</sub>  | 700  | 2.03                | 99.1                       | 0               | 0              | 0.9            | 0              | 0   |
|                                     | 750  | 12.3                | 97.7                       | 0               | 0              | 1.5            | 0.8            | 0   |
|                                     | 800  | 36.7                | 95.6                       | 0               | 0              | 2.8            | 1.6            | 0   |
| 50% C <sub>2</sub> H <sub>6</sub> / | 700  | 19.2                | 81.9                       | 4.5             | 0              | 4.8            | 3.7            | 5.1 |
| 47.5% N <sub>2</sub> /              | 750  | 30.3                | 89.2                       | 3.4             | 0              | 4.3            | 3.0            | 0   |
| $2.5\% O_{2}^{-}$                   | 800  | 53.5                | 90.8                       | 2.3             | 0              | 4.9            | 2.0            | 0   |
| 100% C <sub>2</sub> H <sub>6</sub>  | 700  | 2.28                | 98.2                       | 0               | 0              | 1.8            | 0              | 0   |
| + CH <sub>3</sub> Čl °              | 750  | 12.2                | 96.2                       | 0               | 0              | 2.3            | 1.4            | 0   |
| -                                   | 800  | 36.9                | 94.3                       | 0               | 0              | 3.7            | 2.0            | 0   |

<sup>&</sup>lt;sup>a</sup> percentage conversion of C<sub>2</sub>H<sub>6</sub>.

respect, therefore, our results differ from those by Otsuka et al. [14] who reported that  $CH_3Cl$  catalysed the dehydrogenation of  $C_2H_6$  at all temperatures above 650°C. If there is some residual  $O_2$  in the post-catalyst gas stream then there may be a significant amount of  $C_2H_4$  formed from  $C_2H_6$  through homogeneous reactions involving  $O_2$  but *not involving*  $CH_3Cl$ .

The post-catalyst gas mixture in our experiments with the  $LiCl/MnO_2$  catalyst referred to above, will contain only a small amount of  $C_2H_6$  (about 5%) in excess

Table 2 Non-catalytic dehydrogenation of ethane in the presence of methane in an empty silica reactor.

| Gas mixture                                                                | T/°C | yield/% a |  |
|----------------------------------------------------------------------------|------|-----------|--|
| 95% CH <sub>4</sub> /5% C <sub>2</sub> H <sub>6</sub>                      | 700  | 1.55      |  |
|                                                                            | 750  | 6.70      |  |
|                                                                            | 800  | 21.7      |  |
| 95% CH <sub>4</sub> /5% C <sub>2</sub> H <sub>6</sub> + CH <sub>3</sub> Cl | 700  | 1.09      |  |
| 2 0                                                                        | 750  | 5.17      |  |
|                                                                            | 800  | 20.4      |  |
| 47.5% CH <sub>4</sub> /47.5% N <sub>2</sub> /                              | 700  | 14.2      |  |
| $2.5\% O_2/2.5\% C_2H_6$                                                   | 750  | 26.6      |  |
| 2, 2 0                                                                     | 800  | 41.8      |  |
| 47.5% CH <sub>4</sub> /47.5% N <sub>2</sub> /                              | 700  | 12.5      |  |
| $2.5\% \text{ O}_2/2.5\% \text{ C}_2\text{H}_6$                            | 750  | 24.3      |  |
| +CH <sub>3</sub> Cl                                                        | 800  | 42.3      |  |

<sup>&</sup>lt;sup>a</sup> yield of C<sub>2</sub>H<sub>4</sub>, defined as (% conversion of ethane × % selectivity)/100.

b selectivity is defined as:  $((C_2H_6 \text{ converted to product } i)/(C_2H_6 \text{ converted to all products}))\times 100$   $C_1$ ,  $C_3$  and  $C_4$ , refer, respectively, to products containing 1, 3 or 4 C atoms.

<sup>&</sup>lt;sup>c</sup> flow rate of CH<sub>3</sub>Cl was 5 cm<sup>3</sup> min<sup>-1</sup>.

 $\mathrm{CH_4}$ . Therefore, in order to further explore the role of homogeneous reactions in the formation of  $\mathrm{C_2H_4}$  we have prepared gas mixtures having a large  $\mathrm{CH_4/C_2H_6}$  ratio. When these were passed through the empty silica reactor the results shown in table 2 were obtained. (Experiments using pure  $\mathrm{CH_4}$  show virtually no reaction under these conditions.)

The results confirm those described in table 1. Addition of a small amount of  $O_2$  increases the yield of  $C_2H_4$  significantly. However, the addition of  $CH_3Cl$  has no effect on the yield of  $C_2H_4$  either in the absence or presence of  $O_2$ . The conclusion is clear. Under our conditions, gas phase  $CH_3Cl$  is not responsible for the high selectivity to  $C_2H_4$  over chloride-containing catalysts.

From the gas kinetic data reported by Karra and Senkan [15] it is apparent that the rate of decomposition of  $CH_3Cl$  into  $CH_3$  and Cl radicals is very slow so it is perhaps not surprising that  $CH_3Cl$  is observed to have so little effect on the ethane dehydrogenation reaction. Equally, however, the same kinetic data show that HCl decomposes very readily to produce Cl radicals. Since HCl is produced over chloride-containing catalysts (see fig. 2) this may be is responsible for the high selectivity to  $C_2H_4$ .

#### 3.2. ADDITION OF HCl

Table 3 shows the effect of adding different amounts of HCl to various gas mixtures. It is apparent both in the absence and in the presence of  $O_2$  that when HCl is added the yield of  $C_2H_4$  is greatly enhanced. Indeed when HCl is added at the level of about 1.5% the yield of  $C_2H_4$  is high enough to account for all the  $C_2H_4$  formed in the catalysed reactions referred to above. However, the amount of HCl present in the post-catalyst gas volume was typically < 50 ppm, so although these experiments demonstrate that HCl may have an effect (whereas  $CH_3Cl$  clearly does not) they do not confirm that HCl is important under our catalytic conditions.

| Table 3                                                         |
|-----------------------------------------------------------------|
| Influence of HCl on the non-catalytic dehydrogenation of ethane |

| Gas mixture                                           | HCl flow/cm <sup>3</sup> min <sup>-1</sup> | yield/% <sup>a</sup> |  |
|-------------------------------------------------------|--------------------------------------------|----------------------|--|
| 95% CH <sub>4</sub> /5% C <sub>2</sub> H <sub>6</sub> | 0.0                                        | 7.58                 |  |
|                                                       | 0.01                                       | 8.58                 |  |
|                                                       | 0.10                                       | 13.8                 |  |
|                                                       | 1.00                                       | 40.4                 |  |
| 47.5% CH <sub>4</sub> /47.5% N <sub>2</sub> /         | 0.0                                        | 28.8                 |  |
| $2.5\% \text{ O}_2/2.5\% \text{ C}_2\text{H}_6$       | 0.01                                       | 41.9                 |  |
|                                                       | 0.10                                       | 57.9                 |  |
|                                                       | 1.00                                       | 85.7                 |  |

a yield of  $C_2H_4$ , defined as (% conversion of ethane  $\times$  % selectivity)/100.

| Table 4                  |                |                     |
|--------------------------|----------------|---------------------|
| Influence of post-cataly | st volume on e | thene selectivity a |

| Catalyst bed position in furnace | C/% ° | Selectivity/%       | b        |  |
|----------------------------------|-------|---------------------|----------|--|
|                                  |       | $\overline{C_2H_4}$ | $C_2H_6$ |  |
| middle                           | 9.36  | 42.8                | 47.2     |  |
| bottom                           | 8.87  | 38.1                | 50.5     |  |

## 3.3. INFLUENCE OF POST-CATALYST VOLUME ON THE SELECTIVITY TO $C_2H_4$

Under our experimental conditions only a very small amount of  $O_2$  and < 50ppm of HCl are present in the gas mixture exiting from the bottom of the catalyst bed. From the results presented above we believe that it is very unlikely that the high selectivity to C<sub>2</sub>H<sub>4</sub> could be due to post-catalyst homogeneous reactions. However, in order to check out this possibility we have performed some experiments in which we have varied the post-catalyst volume.

Table 4 shows the effect of moving the furnace so that the catalyst bed is either close to the middle, or the bottom of the hot zone. The selectivity to C<sub>2</sub>H<sub>4</sub> when the catalyst bed is at the bottom of the furnace corresponds to a situation where the post-catalyst volume at the reaction temperature is very small. Comparison with the C<sub>2</sub>H<sub>4</sub> selectivity when the catalyst bed is in the normal middle position shows that only a small amount of the C<sub>2</sub>H<sub>4</sub> is produced through gas phase reactions. We believe that the main reason for the enhanced selectivity to C<sub>2</sub>H<sub>4</sub> over chloride-containing catalysts is because the chloride modifies the surface of the oxide and either eliminates total oxidation sites [10] and/or creates new types of dehydrogenation site. Sokolovskii et al. [8] have similarly concluded that surface reactions are more important than gas phase reactions in the synthesis of C<sub>2</sub>H<sub>4</sub> over their CaO/CaCl<sub>2</sub> catalysts.

### 4. Conclusions

Ethene selectivity enhancement over chloride-containing catalysts, under typical methane-coupling conditions, is mainly due to reactions occurring in the catalyst bed. Gas phase dehydrogenation of ethane may be significant, particularly when there is some residual oxygen in the post-catalyst gas mixture, but methyl chloride has no effect on the conversion of ethane to ethene. HCl can increase the rate of conversion of ethane into ethene in the gas phase. However, this is only an important factor when there is a large partial pressure of HCl. Whether the dehydrogenation of ethane to ethene in the catalyst bed is due

<sup>&</sup>lt;sup>a</sup> LiCl/MnO<sub>2</sub> catalyst at 750 °C in a 50% CH<sub>4</sub>/47.5% N<sub>2</sub>/2.5% O<sub>2</sub> mixture. <sup>b</sup> selectivity is defined as: ((CH<sub>4</sub> converted to product i)/(CH<sub>4</sub> converted to all products))×100.

c percentage conversion of CH<sub>4</sub>.

purely to a surface catalysed heterogeneous reaction or partly attributable to a homogeneous gas phase reaction occurring just above the catalyst surface is not yet known.

## Acknowledgements

We are grateful to British Gas plc for providing financial support for GDS & SCT and to British Gas plc and SERC for funding the equipment used in this research. We are pleased to acknowledge that SCT is in receipt of a S.L. Pao Scholarship from Hong Kong and an ORS award.

#### References

- [1] N.D. Parkyns, Potential of natural gas as a source of future chemicals, in: Symposium on Energy Production Processes, April 1988 (Institution of Chemical Engineers, London) p. 35.
- [2] G.E. Keller and M.M. Bhasin, J. Catal. 73 (1982) 9.
- [3] T. Ito, Ji-X Wang, C-H Lin and J.H. Lunsford, J. Amer. Chem. Soc. 107 (1985) 5062.
- [4] R. Burch, G.D. Squire and S.C. Tsang, Appl. Catal. 43 (1988) 105.
- [5] H. Imai and T. Tagawa, J. Chem. Soc., Chem. Commun. (1986) 52.
- [6] K. Otsuka, Q. Liu, M. Hatano and A. Morikawa, Chem. Lett. (1986) 903.
- [7] K. Otsuka, Sekiyu Giakkaishi 30 (1987) 385.
- [8] A.N. Shigapov, M.A. Novozhilova, S.N. Vereshchagin, A.G. Anshits and V.D. Sokolovskii, React. Kinet. Catal. Lett. 37 (1988) 397.
- [9] W. Ueda and J.M. Thomas, J. Chem. Soc., Chem. Commun. (1988) 1148.
- [10] R. Burch, G.D. Squire and S.C. Tsang, Appl. Catal. 46 (1989) 69.
- [11] H.P. Withers, C.A. Jones, J.J. Leonard and J.A. Sofranko, U.S. Patent, 6, 634, 800 (1987).
- [12] G.S. Lane and E.E. Wolf, J. Catal. 113 (1988) 144.
- [13] H.M.N. Van Kasteren, J.W.M.H. Geerts and K.V.D. Wiele, preprint in 9th Int. Catalysis Congress, Calgary, 1988.
- [14] K. Otsuka, M. Hatano and T. Komatsu, Methane Conversion Symposium, New Zealand, 1987.
- [15] S.B. Karra and S.M. Senkan, Ind. Eng. Chem. Res. 27 (1988) 1163.