A NOVEL SERIES OF PHOTOCATALYSTS WITH AN ION-EXCHANGEABLE LAYERED STRUCTURE OF NIOBATE

K. DOMEN *, J. YOSHIMURA, T. SEKINE, A. TANAKA + and T. ONISHI *

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

⁺ Nikon Co., 1773 Asamizodai, Sagamihara 228, Japan

Received 11 December 1989; accepted 16 February 1990

Photocatalysis, ion exchangeable niobates, layered perovskite structure

Ion-exchangeable niobates, $A(M_{n-1}Nb_nO_{3n+1})$ (A = Na, K, Rb, Cs; M = La, Ca etc.), with a layered perovskite structure are found to show a unique photocatalytic activity, especially in those H⁺-exchanged forms, for H₂ evolution from aqueous alcohol solutions as well as O₂ evolution from an aqueous silver nitrate solution.

1. Introduction

Some ion-exchangeable niobates with a layered perovskite structure were found to be a new class of heterogeneous photocatalysts due to the unique structure of those materials, and were suggested to work as "two-dimensional" photocatalysts in which catalytic reactions mainly proceed at the interlayer spaces.

Recently we reported that some ion-exchangeable layered compounds showed a noticeable photocatalytic activity. Especially, $A_4Nb_6O_{17}$ (A = K or Rb) loaded with Ni metal exhibited high and stable activity for overall water splitting into H_2 and O_2 [1, 2], and it was inferred that intercalated water molecules are decomposed into H_2 and O_2 at the interlayer spaces of $A_4Nb_6O_{17}$ in these catalysts.

This paper will report other types of layered compounds as photocatalysts, which are classified in the layered perovskite family. These compounds are generally formulated as $A(M_{n-1}Nb_nO_{3n+1})$ (A = Na, K, Rb, Cs; M = La, Ca, etc.) [3-7]. For example, $ALaNb_2O_7$ and $ACa_2Nb_3O_{10}$ are the members of n=2 and 3, respectively, as shown in fig. 1. Alkaline metal ions at the interlayers can be replaced by other cations. Especially in acidic solution, almost 100% of alkaline

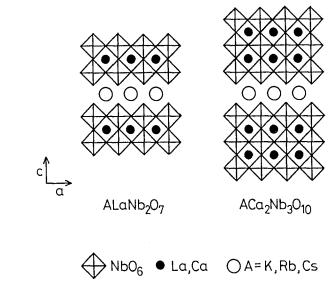


Fig. 1. Schematic structures of ALaNb₂O₇ and ACa₂Nb₃O₁₀ (A = K, Rb, Cs).

metal ions are exchanged by H⁺ ions. The H⁺-exchanged forms of those compounds are easily hydrated while the original ones are not.

2. Experimental

Catlysts were prepared according to the previous publications [3–7]. ALaNb₂O₇ was prepared by calcination of stoichiometric mixture of A_2CO_3 , La_2O_3 and Nb_2O_5 at $1200\,^{\circ}$ C for 2 days in air. $ACa_2Nb_3O_{10}$ and $ASr_2Nb_3O_{10}$ were obtained from mixture of A_2CO_3 , $CaCO_3$, Nb_2O_5 and A_2CO_3 , $CaCO_3$,

3. Results and discussion

The rates of $\rm H_2$ and $\rm O_2$ evolutions are summarized in table 1 as well as the band gaps estimated from diffuse reflectance spectra. The results of $\rm K_4Nb_6O_{17}$ and $\rm TiO_2$ are also shown for reference. Pt loading was carried out by a photode-

Catalyst	n	rate of gas evolution $/\mu$ mol·h ⁻¹					band gap
		H ₂ a)				$O_2^{b)}$	energy/eV
		original		H ⁺ -exchanged c)			
		alone	Pt-loaded d)	alone	Pt-loaded d)		
K ₄ Nb ₆ O ₁₇ e)	1	130	270	750	740	13	3.5
KLaNb ₂ O ₇	2	28	54	760	3800	46	3.2
RbLaNb ₂ O ₇	2	60	90	740	2600	2	3.35
CsLaNb ₂ O ₇	2	12	28	300	2200	3	3.3
KCa ₂ Nb ₃ O ₁₀	3	14	100	5900	19000	8	3.35
RbCa ₂ Nb ₃ O ₁₀	3	3	26	3100	17000	16	3.5
$CsCa_2Nb_3O_{10}$	3	2	10	970	8300	10	3.5
$KSr_2Nb_3O_{10}$	3	10	110	8900	43000	30	3.16
KCa ₂ NaNb ₄ O ₁₃	4	5	280	790	18000	39	3.21

Table 1 Photocatalytic activities of layered perovskite compounds; A $(M_{n-1}Nb_nO_{3n+1})$

7400

TiO₂ f)

Catalyst: 1 g, Hg lamp (450 W), a) CH₃OH 50 ml + H₂O 300 ml, b) 0.01 M AgNO₃aq. 350 ml, c) H⁺-exchange degreee > 95%, d) 0.1 wt% of Pt loading, e) layered orthorhombic structure, n) anatase, purchased from MCB.

position method with addition of H₂PtCl₆ into the aqueous methanol solution [8]. Although all layered compounds showed moderate activity for H₂ evolution in those original forms, marked enhancement of the H₂ evolution rate by two or three orders of magnitude were observed by the replacement of alkaline metal ions with H⁺ ions. Further increase of the activity by several times occurred with the loading of Pt in each case. Since these layered compounds work as cation-exchanger, PtCl₆²⁻ ions are difficult to intercalate into interlayer spaces of the catalyst; i.e. photo-deposited Pt particles are expected to exist at the external surface of the catalyst. It should be emphasized that Pt loading is not an indispensable condition for efficient H₂ evolution, which is unlike the cases of TiO₂, CdS and so on. The activities were stable over about a 10 h period and the total amounts of evolved H₂ exceeded the equivalent amounts of used catalysts which confirmed the catalytic cycle of the reaction for every H⁺-exchanged form.

As is mentioned above, H⁺-exchanged forms of these compounds are hydrated and the c-axis lengths corresponding to the interlayer spacing increase with hydration. The marked increase of the H₂ evolution rates, therefore, is considered to be due to the migration of the reactants, i.e. H₂O and CH₃OH, into the interlayer spaces. To examine this speculation, the dependence of the H₂ evolution rate on the degree of H⁺-exchange for KCa₂Nb₃O₁₀ in aqueous methanol solution was studied. As shown in fig. 2, the rate of H₂ evolution increased drastically with H⁺-exchange degree of ca. 60%. From XRD measurements, the interlayer space length (c-axis) was found to be expanded by ca. 0.8 Å at the same degree of H⁺-exchange. This structural change is caused by an increase of

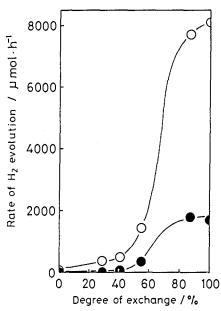


Fig. 2. Dependence of H₂ evolution rate on the degree of H⁺-exchange over H⁺/KCa₂Nb₃O₁₀ and Pt(0.1 wt%)−H⁺/KCa₂Nb₃O₁₀. •; H⁺/KCa₂Nb₃O₁₀, ○; Pt(0.1 wt%)-H⁺/KCa₂Nb₃O₁₀. H⁺-exchange was carried out in 0.1-5N HNO₃ aqueous solution for 3 days at room temperature. 450 W high pressure mercury lamp, catalyst 1 g, CH₃OH (50 ml)+H₂O(300 ml).

hydrated water molecules at the interlayer spaces and is responsible for the increase of the H₂ evolution rate. Further support for the migration of reactants into the interlayer spaces was obtained by comparing each H₂ evolution rate over H⁺-exchanged KCa₂Nb₃O₁₀ in various kinds of alcohol solutions, as summerized in table 2 as well as the results of a reference Pt/TiO₂ catalyst. With the increase of the length of an alkyl group of alcohol from methyl to butyl, the rate of H₂ evolution decreased by more than two orders of magnitude, which may suggest that the migration of alcohol molecules into the interlayer spaces determines the reaction rate.

Table 2 Rates of H_2 evolution from various kinds of alcohol solutions (μ mol·h⁻¹)

alcohol	catalyst							
	KCa ₂ Nb ₃ O ₁₀	H ⁺ /KCa ₂ Nb ₃ O ₁₀ a)	Pt-H ⁺ /KCa ₂ Nb ₃ O ₁₀ a,b)	Pt-TiO ₂ b)				
methanol	7	920	4670	4000				
ethanol	7	73	384	5170				
1-propanol	3	27	43	3480				
1-butanol	2	19	30	2790				

Catalyst: 1 g, Hg lamp (450 W), alcohol 50 ml + H_2O 300 ml, ^{a)} H +-exchange degree > 95%, ^{b)} 0.1 wt% of Pt loading.

In aqueous $AgNO_3$ solution, O_2 evolution was observed for each layered compound under a high pressure Hg lamp irradiation as shown in table 1. It is, therefore, suggested that these layered perovskites have a possibility for overall water splitting by proper modification as in the case of $A_4Nb_6O_{17}$ (A=K, Rb). It is further noted that many derivatives of this family are can be prepared by replacing Ca^{2+} , Sr^{2+} or La^{3+} positions by other metal ions. Some of those compounds such as $KPbNb_2O_7$ and $KNdNb_2O_7$ actually show photoresponse in visible light irradiation [9] and further study is now proceeding in our laboratory.

References

- [1] K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K. Maruya and T. Onishi, J. Chem. Soc., Chem. Commun. (1986) 356.
- [2] A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika and T. Onishi, J. Catal. 111 (1988) 67;
 A. Kudo, A. Tanaka, K. Domen, K. Maruya and T. Onishi, J. Catal. 120 (1989) 337.
- [3] M. Dion, M. Ganne and M. Tournoux, Mat. Res. Bull. 16 (1981) 1429.
- [4] M. Dion, M. Ganne and M. Tournoux, Rev. Chim. Miner. 21 (1984) 92.
- [5] A.J. Jacobson, J.W. Johnson and J.T. Lewandowski, Inorg. Chem. 24 (1985) 3729.
- [6] M. Dion, M. Ganne. and M. Tournoux, Rev. Chim. Miner. 23 (1986) 61.
- [7] J. Gopalakrishnan and V. Bhat, Mat. Res. Bull. 22 (1987) 413.
- [8] B. Krarutler and A.J. Bard, J. Am. Chem. Soc. 100 (1978) 5985.
- [9] J. Yoshimura, A. Tanaka, K. Domen, K. Maruya and T. Onishi, to be published.