# THE LIQUID PHASE REMOVAL OF NO AND H<sub>2</sub>S POLLUTANTS USING MEMBRANE SEPARATION OF THE HOMOGENEOUS CATALYST

M.A. FEDOTOV, O.M. ILINICH, L.I. KUZNETSOVA, G.L. SEMIN, Yu.S. VETCHINOVA and K.I. ZAMARAEV \*

Institute of Catalysis, Siberian Branch of the USSR Academy of Sciences, Novosibirsk 630090, USSR

Received 4 September 1990; accepted 13 September 1990

Membranes, reverse osmosis, homogeneous catalysis, iron-containing heteropolyanion

Using the liquid phase reaction  $2NO + H_2S + 2O_2 \rightarrow 2HNO_3 + S$  in the presence of heteropolyanion catalyst  $PW_{11}Fe^{II}(H_2O)O_{39}^{5-}$ , the potentialities of the membrane method in separation of a homogeneous catalyst from a soluble reaction product have been demonstrated. The use of membranes for this purpose is expected to give a further impact for the search of industrial processes based on homogeneous catalysis.

### 1. Introduction

The joint use of catalysis and membrane methods of separation opens new perspectives in the design of chemical processes. The membrane separation is better known for processes based on heterogeneous catalysts, the membrane catalysis by metals being the best known example [1]. Heterogeneous catalysis of propylene dehydrodimerisation of the oxide membrane catalyst [2] and electrocatalytic reactions in the presence of oxygen- and proton-conducting inorganic and polymeric membranes [3–16] have been also reported.

The possibilities of combining membrane separation method with homogeneous catalysis have been studied to much less extent. Among the work in this field can be mentioned the use of reverse osmosis (RO) for activating a homogeneous catalyst by selective removal of a triphenylphosphine ligand through the membrane, thus creating the over-equilibrium concentration of catalytically active ligand deficient complex [17]. In refs. [18,19] the membrane distillation method was utilized to increase conversion in equilibrium reactions by removing water which was one of reaction products.

In practical homogeneous catalysis, an important problem is the separation of the catalyst from the reaction products. The present study demonstrates the

<sup>\*</sup> To whom correspondence should be addressed.

<sup>©</sup> J.C. Baltzer A.G. Scientific Publishing Company

possibilities of membrane methods in solving this problem. As an example, the liquid phase process of NO and H<sub>2</sub>S pollutants removal in the presence of homogeneous catalyst-iron-containing heteropolyanion-was chosen.

Iron(II)-substituted heteropolyanions (HPA) in aqueous solutions interact with NO, forming nitrosyl complexes which are further exidized by oxygen giving  $NO_3^-$  (at pH < 6) or  $NO_2^-$  (at pH > 6) [20]. Iron(III)-substituted HPA formed in this reaction can be reduced back to the initial state, e.g. by the action of H<sub>2</sub>S [20]. Combination of these stoichiometric reactions taking place at room temperature gives the catalytic cycle

$$2HPA - Fe^{II}(H_2O) + 2NO \rightarrow 2HPA - Fe^{II}(NO) + 2H_2O$$
 (1)

$$2HPA - Fe^{II}(NO) + 2O_2 + 2H_2O \rightarrow 2HPA - Fe^{III}(H_2O) + 2NO_3^-$$
 (2)

$$2HPA - Fe^{III}(H_2O) + H_2S \rightarrow 2HPA - Fe^{II}(H_2O) + 2H^+ + S$$
 (3)

$$2NO + 2O_2 + H_2S \qquad \rightarrow 2HNO_3 + S \tag{4}$$

HPA PW<sub>11</sub>Fe<sup>II</sup>(H<sub>2</sub>O)O<sub>39</sub><sup>5-</sup> (or briefly PW<sub>11</sub>Fe<sup>II</sup>) was chosen as the catalyst of reaction (4) because pH region of its stability (pH 2-6) allows to oxidize the nitrosyl complex formed in reaction (1), to HNO<sub>3</sub> [20], whose solutions do not evolve NO back, differing in this respect from HNO<sub>2</sub>.

## 2. Experimental

#### 2.1. SYNTHESIS OF HPA

HPA PW<sub>11</sub>Fe<sup>II</sup> was synthesized according to ref. [21]. To the initial solution of  $H_3PW_{12}O_{40}$ ,  $H_3PO_4$  was added until the ratio P/W = 11 was achieved; then the solution was heated up to boiling, and Na<sub>2</sub>CO<sub>3</sub> was added to obtain pH 4, at which the Na salt of HPA PW<sub>11</sub>O<sub>39</sub><sup>7</sup> was formed. HPA PW<sub>11</sub>Fe<sup>II</sup>(H<sub>2</sub>O)O<sub>39</sub><sup>5</sup> was obtained by adding FeSO<sub>4</sub> · 7H<sub>2</sub>O to the latter solution in the ratio Fe: PW<sub>11</sub> = 1:1. Formation of PW<sub>11</sub>O<sub>39</sub><sup>7</sup> and PW<sub>11</sub>Fe<sup>II</sup>(H<sub>2</sub>O)O<sub>39</sub><sup>5</sup> was controlled by <sup>31</sup>P NMR (for PW<sub>11</sub>O<sub>39</sub><sup>7</sup>,  $\delta = -106$  ppm, for PW<sub>11</sub>Fe<sup>II</sup>(H<sub>2</sub>O)O<sub>39</sub><sup>5</sup>,  $\delta = 615$  ppm with respect to  $H_3PO_4$  used as the external reference [21]). Iron (III)-containing HPA was obtained by oxidation of PW<sub>11</sub>Fe<sup>II</sup>(H<sub>2</sub>O)O<sub>39</sub><sup>5</sup> with oxygen in the solution.

#### 2.2. GENERAL SCHEME OF THE PROCESS

The scheme of the process for carrying out reactions (1)–(3) together with membrane regeneration of the HPA catalyst is given in fig. 1. In the first stage NO or its mixture with argon is absorbed by  $PW_{11}Fe^{II}$  (reaction (1)); then the nitrosyl complex formed is oxidized by  $O_2$  giving  $NO_3^-$  and  $PW_{11}Fe^{III}$  (reaction

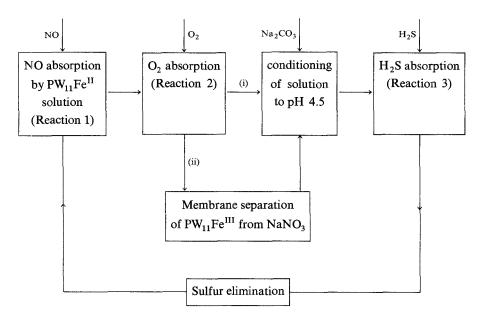



Fig. 1. General scheme of the process of NO and H<sub>2</sub>S removal with membrane separation of homogeneous PW<sub>11</sub>Fe<sup>1II</sup> catalyst.

(2)). After this the solution containing  $PW_{11}Fe^{III}$  and  $NO_3^-$  can be recycled either by route (i) (if NO<sub>3</sub><sup>-</sup> concentration is low) or by route (ii) (if NO<sub>3</sub><sup>-</sup> concentration is high). Route (ii) implies the use of membrane apparatus where NO<sub>3</sub> is separated from HPA by RO. NO<sub>3</sub><sup>-</sup> penetrates through the membrane and thus is eliminated from the reaction mixture, while HPA remains there. In the next stage the pH of the reaction mixture is first increased up to 4.5 by adding Na<sub>2</sub>CO<sub>3</sub>, and then the reaction mixture is reduced with H<sub>2</sub>S (reaction (3)). Then sulfur is separated by means of either filtration or centrifugation. After this, further absorption of NO takes place, and so on. Further details of the equipment used to carry out reactions (1)-(3) can be found in ref. [20]. The reactions were carried out at 20°C at total pressure of 1 at. Contact solutions with pH 2.4-2.8, containing  $0.005-0.24 \text{ mole/1 Na}_5\text{PW}_{11}\text{Fe}^{11}(\text{H}_2\text{O})\text{O}_{39}$  and 0.005-0.24 mole/1Na<sub>2</sub>SO<sub>4</sub> (obtained as described in section 2.1), were used initially to provide NO absorption via reaction (1). During cyclic performance of reaction sequence (1)-(3), up to 0.8 mole/l of NaNO<sub>3</sub> could be accumulated in the contact solution without any noticeable decrease of NO absorption. The reverse osmosis (RO) membrane separation of HPA catalysts was carried out at the same temperature under a pressure of pure argon of 30 at. in a stainless steel cell with a magnetic stirrer. The composite RO membrane with a thin polyamide skin [22] was used.

#### 2.3. ANALYSIS OF PRODUCTS

The concentration of Fe(III)-containing HPA was determined with a Spekord M-40 spectrometer from the intensity of the absorption at 21600 cm<sup>-1</sup>. Total

concentration of iron in solution was determined by means of flame-photometry, while the concentration of NO<sub>3</sub> by <sup>14</sup>N NMR. Signals of <sup>14</sup>N and <sup>31</sup>P NMR were registered at frequencies of 21.68 and 121.47 MHz. Chemical shifts were measured with respect to external references NaNO<sub>3</sub> and H<sub>3</sub>PO<sub>4</sub>.

Accuracy of the concentration measurements was  $\pm 5\%$  for Fe,  $\pm 15\%$  for  $NO_3^-$  and  $NO_2^-$ .

#### 3. Results and discussion

The amounts of NO and O<sub>2</sub> absorbed via reactions (1) and (2) by PW<sub>11</sub>Fe<sup>II</sup> and NaNO3 containing solutions, do not depend on NaNO3 concentration within the range 0.2–0.8 mole/I (table 1) and correspond to the reaction stoichiometry.

Hence, accumulation of NO<sub>3</sub> up to the concentration of at least 0.8 mole/1 does not suppress the reactions (1) and (2), and there is no need to remove NO<sub>3</sub> from the reaction mixture after each cycle of reactions (1)-(3). It is sufficient to remove NO<sub>3</sub> periodically, after its concentration reaches ca. 0.8 mole/1.

Note that NO<sub>3</sub> is the only product of NO oxidation via reaction (2), as, after its completion, there is no  $^{14}$ N NMR signals from  $NO_2^-$ . At the same time, for the reference samples containing 0.2 mole/l  $PW_{11}Fe^{III} + (0.01-0.1)$  mole/l  $NaNO_2 + 0.4$  mole/l  $NaNO_3$  under argon atmosphere, the <sup>14</sup>N signals from both  $NO_3^-$  ( $\delta = 0$  ppm) and  $NO_2^-$  ( $\delta = 202$  ppm) have been observed.

Retaining ability of a membrane with respect to a solute is characterized by selectivity  $S = (1 - C_i/C_i^0) \cdot 100\%$ , where  $C_i^0$  and  $C_i$  are concentrations of the solute in the initial solution and in the permeate, respectively. For the solution containing HPA PW<sub>11</sub>Fe<sup>III</sup> in concentrations ranging between 0.005 and 0.24 mole/l and having pH between 2.4 and 3.6, the selectivity of the membrane with respect to the HPA was found to equal 97-99.5%. After fractionation with the membrane, the HPA composition remained unchanged (in particular, Fe<sup>III</sup> ion was not lost from PW<sub>11</sub>Fe<sup>III</sup>), as ascertained by <sup>31</sup>P NMR of solution.

For the NaNO<sub>3</sub> solution with  $[NaNO_3] > 0.2$  mole/1 the selectivity S with respect to NaNO<sub>3</sub> did not exceed 60%. Marked difference between the selectivi-

Table 1 Effect of NaNO<sub>3</sub> concentration on the amount of NO absorbed at 20°C by 10 ml of 0.216 mole/1 solution of PW<sub>11</sub>Fe<sup>11</sup> with pH 4.5–4.7.

| [NaNO <sub>3</sub> ],<br>(mole/l) | [NO] absorbed (mole/l) | pH after reaction (2) |  |
|-----------------------------------|------------------------|-----------------------|--|
| 0.2                               | 0.214                  | 2.4                   |  |
| 0.4                               | 0.218                  | 2.5                   |  |
| 0.6                               | 0.220                  | 2.3                   |  |
| 0.8                               | 0.219                  | 2.3                   |  |

Table 2 Fractionation of HPA-NO<sub>3</sub> mixture. Three samples of permeate with the volumes 2.8, 2 and 2.6 ml were collected from the mixture with the initial volume 30 ml.

| Sample             | Volume<br>(ml) | [HPA]<br>(mole/l) | [NO <sub>3</sub> <sup>-</sup> ]/[HPA] |  |  |
|--------------------|----------------|-------------------|---------------------------------------|--|--|
| Initial mixture    | 30             | 0.219             | 1.74                                  |  |  |
| Permeate: sample 1 | 2.8            | 0.0113            | 62                                    |  |  |
| sample 2           | 2              | 0.0321            | 20                                    |  |  |
| sample 3           | 2.6            | 0.0714            | 9                                     |  |  |
| Nonpermeate        | 22.6           | 0.286             | 0.9                                   |  |  |

Table 3 Relative amounts of NO absorbed in consecutive runs (t = 20 °C)

| Run number               | 1   | 2 | 3    | 4 *  | 5    | 6    | 7 *  |
|--------------------------|-----|---|------|------|------|------|------|
| [NO <sub>3</sub> ]/[HPA] | 0.9 | _ | 0.83 | 0.89 | 0.86 | 0.80 | 1.03 |

<sup>\*</sup> Separation of NO<sub>3</sub> from HPA with the membrane was carried out before runs number 4 and 7.

ties with respect to HPA and nitrate made it possible to eliminate efficiently the nitrate from the reaction mixture retaining the HPA in it (table 2).

The data of table 2 show that  $NO_3^-$  and HPA are indeed well separated. The loss of HPA upon a single contact with the membrane does no exceed 3% of its initial quantity. The pH of the permeate solutions was found to range between 2.8 and 3.2, i.e. the exceed slightly pH = 2.8 of the initial solution, thus indicating that  $Na^+$  ions pass through the membrane to permeate more easily than protons.

To elucidate the possibility of multifold reuse of HPA in the NO absorption, a number of runs (1)–(3) with the accumulation of nitrate ions followed by their separation, were carried out. During each run in the course of reactions (1) and (2) pH reaches ca. 2.4. After completing the reaction (2), pH of the solution was adjusted with Na<sub>2</sub>CO<sub>3</sub> to 4.5. Under such conditions H<sub>2</sub>S reacts with HPA quantitatively by reaction (3), and hence if dosed properly, may be used as a reagent for the HPA absorber regeneration with no environment pollution.

Note that as checked in special experiments, the absorption capacity with respect to NO for HPA, separated by RO, remains unchanged within the accuracy of our measurements (table 3).

#### 4. Conclusions

Thus, using the liquid phase process of NO and  $H_2S$  detoxication via the reaction  $2NO + H_2S + 2O_2 \rightarrow 2HNO_3 + S$  in the presence of a heteropolyanion catalyst  $PW_{11}Fe^{II}(H_2O)_{39}^{5-}$  we have demonstrated the potentialities of the membrane method in separation of a homogeneous catalyst from a soluble reaction

product. One may expect that the use of membranes for this purpose will markedly influence the search of industrial processes based on homogeneous catalysis.

# Acknowledgement

Samples of the composite RO membranes used in the present study were kindly supplied by Dr. A.I. Bon (Center of Science and Industry "Polymersynthesis". Vladimir, USSR), to whom the authors express their sincere thanks.

# References

- [1] V.M. Gryaznov, ed, Hydrogen and Oxygen Permeable Membrane Catalysts (Institute of Petrochemical Synthesis, Moscow, 1985).
- [2] R. Di Cosimo, J.D. Burrington and R.R. Grasselli, J. Catal. 102 (1986) 234.
- [3] M. Stoukides and C.G. Vayenas, J. Catal. 70 (1981) 137.
- [4] M. Stoukides and C.G. Vayenas, J. Catal. 82 (1983) 45.
- [5] J.N. Michaels and C.G. Vayenas, J. Catal. 85 (1984) 477.
- [6] C.T. Signal and C.G. Vayenas, Solid State Ionics 5 (1981) 567.
- [7] K. Otsuka, S. Yokoyama and A. Morikawa, Chem. Lett. (1985) 319.
- [8] S. Seimanides and M. Stoukides, J. Electrochem. Soc. 133 (1986) 1535.
- [9] T.M. Gur and R.A. Huggins, J. Electrochem. Soc. 126 (1979) 1067.
- [10] C.G. Vayenas and H.M. Saltsburg, J. Catal. 57 (1979) 296.
- [11] R.A. Goffe and D.M. Mason, J. Appl. Electrochem. 11 (1981) 447.
- [12] T.M. Gur and R.A. Huggins, Science 219 (1983) 967.
- [13] K. Otsuka and I. Yamanaka, Appl. Catal. 25 (1986) 401.
- [14] K. Otsuka, I. Yamanaka and K. Suga, Chem. Lett. (1987) 1087.
- [15] M.B. Demidov, E.N. Savinov and V.N. Parmon, React Kinet. Catal. Lett. 38 (1989) 295.
- [16] V.D. Belyaev, O.V. Bazhan, V.A. Sobyanin and V.N. Parmon, 1st World Congress. II Eur. Workshop: New Developm. in Selective Oxidation. Prepr. F8, (1989) Univ. of Bologna, Italy.
- [17] L.W. Gosser, W.H. Knoth and G.W. Parshall, J. Am. Chem. Soc. 95 (1973) 3436.
- [18] J.F. Jennings and R.C. Binning, US Patent 2956070 (1960).
- [19] H. Kita, K. Tanaka, K. Okamoto and M. Yamamoto, Chem. Lett. (1987) 2053.
- [20] L.I. Kuznetsova, M.A. Fedotov and E.N. Yurchenko, React. Kinet. Catal. Lett. 41 (1989) 333.
- [21] L.I. Kuznetsova and E.N. Yurchenko, React. Kinet. Catal. Lett. 39 (1988) 399.
- [22] S.V. Polyakov et al., Khimiya i Tekhnologiya Vody (in Russian) 11 (1989) 421.