NAFION-H CATALYZED CONDENSATION OF ACETOPHENONE DERIVATIVES. A PREPARATIVE ROUTE OF 1,3,5-TRIARYLBENZENES [1]

Takehiko YAMATO *1, Chieko HIDESHIMA 1, Masashi TASHIRO 2, G.K. Surya PRAKASH 3 and George A. OLAH 3

¹ Department of Industrial Chemistry, Faculty of Science and Engineering, Saga University, Saga 840, Japan

Japan
² Research Institute of Advanced Molecular Science, and Department of Molecular Science and Technology, Graduate School of Engineering, Kyushu University 86, 6-1 Kasuga-kohen, Kasuga-shi, Fukuoka 816, Japan

³ Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, U.S.A.

Received 10 August 1990; accepted 6 September 1990

Solid superacids, Nafion-H catalyst, 1,3,5-triarybenzenes

Nafion-H, a perfluorinated resinsulfonic acid, catalyzes condensation of acetophenones to provide 1,3,5-triarylbenzenes under relatively mild conditions. Reaction are clean, and water formed as by-product does not deactivate the catalyst. However, ortho-substituted acetophenones and 2-acetylthiophene gave no condensation product.

The acid-catalyzed condensation of acetophenone derivatives to the corresponding 1,3,5-triarylbenzenes has been studied using various acid catalysts [2–5]. Generally, elevated temperatures (> 250 °C), prolonged reaction times, and excess of protonic and Lewis acids are, however, required for this condensation reaction.

Over the years we have shown that Nafion-H [6], a superacidic perfluororesinsulfonic acid is a convenient catalyst for a variety of acid-catalyzed synthetic transformations. The selectivity, high catalytic activity, and its ease of reaction frequently make Nafion-H the acid catalyst of choice.

Recently, the convenient condensation of acetone to mesitylene in the presence of Nafion-H catalyst was reported by one of us [7]. We now report the condensation of acetophenones 1a-1n under Nafion-H catalysis. Nafion-H catalyzed condensation reaction of acetophenone derivatives 1a-j was carried out at 145-150°C to provide the corresponding 1,3,5-triarylbenzenes 2a-2g and 2i in 30-75% yields (table 1, scheme 1), but in the case of 1h and 1j only resinous materials were obtained.

Scheme 1.

a; R₁=H; R₂=CH₃ (35 %)

b; R₁=CH₃; R₂=H (34 %)

Scheme 2.

Scheme 3.

	R ¹	\mathbb{R}^2	Reaction time [h]	Yield ^a [%]	m.p. [° C]	
					found	reported
ì.	Н	Н	24	57 (73) b	174–176	175–176 [8]
) .	CH_3	Н	24	43 (75) b	172-175	172–174 [8]
).	CH ₂ CH ₃	H	24	37 (46) ^b	112-114	114 [3]
1.	t-Bu	H	24	31	294-297	294 [3]
.	OCH_3	H	24	34 (67) ^b	145-146	145 [8]
	Br	H	12	73	262-266	159-262 [8]
3.	Cl	H	12	63	244-246	246 [3]
1.	NO_2	H	24	0 °	_	_
	Н	Br	24	74	164-167	163-165 [8]
	OCH ₃	OCH_3	24	0 °	_	_

Table 1 Nafion-H catalyzed condensation of acetophenone derivatives to give 1,3,5-triarylbenzenes

However, ortho-substituted acetophenones 1k-1n and 2-acetyl thiophene gave no condensation product after a long period of heating; 1k and 1l gave only oxidized products (3) (scheme 2) and 1m and 1n deacylated products (4) (scheme 3).

The major advantage in the above method with Nafion-H is the simple workup procedure, wherein the product 2 is isolated by filtration from the catalyst after adding methanol to the reaction mixture and purified by recrystallization.

General procedure for the Nafion-H catalyzed condensation of acetophenones

A mixture of acetophenone (1) (42 mmol), and Nafion-H (500 mg, 10 wt%) was heated at 145–150 °C under nitrogen atomosphere for the reaction time listed in table 1. The reaction was monitored by G.L.C. analysis (OV 1 column). The reaction mixture was cooled to room temperature followed by addition of 20 mL of methanol. The insoluble materials were filtered and washed with dichloromethane (in this step Nafion-H was recovered). The filtrate was condensed to give the crude products, which on recrystallization, gave the respective 1,3,5-triarylbenzenes (2).

Regeneration of Nafion-H catalyst

The catalyst was washed successively with acetone and deionized water, then dried overnight at 105 °C. The obtained catalyst had the same catalytic activity as the fresh catalyst.

^a Yield of product isolated by recrystallization and characterized by I.R. and ¹H-N.M.R. spectroscopy.

b The product yields were determined by G.L.C. analyses.

c Resinous materials were obtained.

References

- [1] (a) Solid superacids catalyzed organic synthesis. 3. Part 2: T. Yamato, C. Hideshima, G.K.S. Prakash and G.A. Olah, Submitted to J. Org. Chem.
 - (b) University of Southern California, considered as catalysis by solid superacids, part 28.
- [2] H.O. Wirth, W. Kern and E. Schmitz, Makromol. Chem. 68 (1963) 69.
- [3] R.E. Lyle, E.J. deWitt, N.M. Nichols and W. Cleland, J. Amer. Chem. Soc. 75 (1953) 5959.
- [4] H. Hohner and F. Vogtle, Chem. Ber. 110 (1977) 3052.
- [5] D.B. Clapp and A.A. Morton, J. Amer. Chem. Soc. 58 (1936) 2172.
- [6] G.A. Olah, P.S. Iyer and G.K.S. Prakash, Synthesis (1986) 513 and references therein.
- [7] G.A. Olah and W.M. Ip, New J. Chem. 12 (1988) 299.
- [8] E. Weber, M. Hecker, E. Koepp, W. Orlia, M. Czugler and I. Csoregh, J. Chem. Soc., Perkin Trans. II (1988) 1251.