Catalytic performance of the Sb–V mixed oxide on Sb–V–O/SiO₂ catalysts in methane selective oxidation to formaldehyde

Haidong Zhang, Jing Zhang, Keqiang Sun, Zhaochi Feng, Pinliang Ying, and Can Li*

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P. O. Box 110, Dalian, 116023, China

Received 23 July 2005; accepted 7 October 2005

Sb–V–O/SiO₂ catalysts were prepared and investigated in methane selective oxidation with O_2 as oxidant. Sb–V–O/SiO₂ catalysts are active and selective in methane selective oxidation. The formaldehyde yield obtained on Sb–V–O/SiO₂ catalysts is clearly higher than that for VO_X/SiO_2 and SbO_X/SiO_2 catalysts. A one-pass formaldehyde yield up to 3% was obtained on Sb–V–O/SiO₂ catalysts at 650 °C. XRD and UV Raman studies showed that the phase of Sb–V mixed oxide on Sb–V–O/SiO₂ catalysts transformed with decreasing Sb/V ratio from Sb₂VO₅ to SbVO₄/VSb_{1-X}O_{4-1.5X} phase. The Sb–V mixed oxide in Sb₂VO₅ phase is more active and selective than that in SbVO₄/VSb_{1-X}O_{4-1.5X} phase.

KEY WORDS: methane; selective oxidation; formaldehyde; antimony-vanadium mixed oxide; phase transform.

1. Introduction

Methane selective oxidation with O_2 as oxidant to methanol or formaldehyde has been paid much attention in the past decades and still remains as a great challenge in catalysis [1–4]. Many supported single metal oxide or multi-component metal oxide catalysts have been widely studied in this reaction [4–15]. It was found that silica-supported vanadium and molybdenum oxide catalysts were more effective than other catalysts [8–11]. However, the formaldehyde selectivity for either vanadium or molybdenum catalysts drops dramatically with increasing methane conversion and nearly no C₁-oxygenates can be obtained at methane conversion higher than 20% under atmospheric pressure without radical initiator [8]. Searching for more selective catalysts is always crucial for this study. In our previous work [16], it was found that SbO_x/SiO₂ catalysts can be used to catalyze methane selective oxidation with O2 as oxidant under atmospheric pressure and the formaldehyde selectivity for SbO_X/SiO₂ catalysts does not drop sharply with increasing methane conversion. The one-pass formaldehyde yield obtained on SbO_X/SiO₂ catalysts is similar to that for MoO_X/SiO₂ catalysts tested under same conditions [16]. However, SbO_x/SiO₂ catalysts are less active than vanadium oxide or molybdenum oxide catalysts. It is difficult to achieve high one-pass formaldehyde yield on SbO_X/SiO₂ catalysts because of their relatively low activity.

We know that, in the methane selective oxidation with O_2 as oxidant, vanadium oxide catalysts are more active than molybdenum oxide catalysts under same

*To whom correspondence should be addressed. E-mail: canli@dicp.ac.cn conditions and the formaldehyde yield obtained on vanadium oxide catalysts are generally higher than that for molybdenum oxide catalysts [12,13,15]. It is possible to achieve high methane conversion with remarkable formaldehyde selectivity by combinational use of antimony and vanadium oxides. In the present work, three different series of silica supported Sb-V mixed oxide catalysts (Sb-V-O/SiO₂) were prepared and investigated in methane selective oxidation with O_2 as oxidant under atmospheric pressure. At same time, some silica supported vanadium oxide catalysts (VO_X/SiO₂) were also prepared and tested as comparisons. It is found that the Sb-V mixed oxides dispersed on silica show both high methane conversion and high formaldehyde selectivity. Higher one-pass formaldehyde yield can thus be obtained for Sb-V-O/SiO₂ catalysts than that for either VO_X/SiO_2 or SbO_X/SiO_2 catalysts.

2. Experimental

Three series of Sb–V–O/SiO $_2$ catalysts labeled as Sb $_5$ V $_{0.14-2.8}$ O/SiO $_2$, Sb $_{10}$ V $_{0.28-5.6}$ O/SiO $_2$ and Sb $_{20}$ V $_{0.56-11.2}$ O/SiO $_2$ (the subscript numbers mean the loading of Sb $_2$ O $_5$ and V $_2$ O $_5$) were prepared with Sb $_2$ O $_5$ loadings at 5, 10 and 20 wt%, respectively. SbO $_X$ and VO $_X$ concentrations were estimated based on Sb $_2$ O $_5$ and V $_2$ O $_5$ loadings. V $_2$ O $_5$ loading varies in the range of Sb/V ratio, 1/1, 1/2, 1/5, 1/10 and 1/20. Sb–V–O/SiO $_2$ catalysts were prepared by a two-step impregnation method. At first, silica (391 m 2 g $^{-1}$) was impregnated with SbCl $_5$ (Acros)ethanol solution. The impregnates were dried at room temperature and then impregnated again with aqueous solution of NH $_4$ VO $_3$ (Acros). Aqueous ammonia solution was then used to adjust the pH value of the

impregnates to 8–9. VO_X/SiO_2 catalysts were prepared by the impregnation of silica with aqueous solution of NH₄VO₃. All solid products were dried at 120 °C and then calcined in air at 700 °C for 4 h. Methane selective oxidation was performed in a microreactor system under atmospheric pressure, using O₂ as oxidant. An Agilent 6890N GC with FID and TCD was employed to do online analysis of products. Methane conversion and formaldehyde selectivity were calculated using an external standard method based on following equations:

CH₄conversion=
$$(M_{CH_4,in}-M_{CH_4,out})/M_{CH_4,in} \times 100\%$$

HCHO selectivity= $M_{HCHO}/(M_{CH_4,in}-M_{CH_4,out}) \times 100\%$

where M_{CH_4}, *in* and M_{CH_4}, *out* are the amount (mol) of methane feed in and remaining in the effluent; M_{HCHO} is the amount (mol) of formaldehyde detected.

X-ray diffraction measurements were performed on a Rigaku D/max-2500/PC X-ray diffractometer with Cu– $K\alpha$ radiation (50 kV, 250 mA) from 15 to 70° at a 5°/ min scan speed. UV Raman spectra were recorded on a Jobin-Yvon T64000 Raman spectrograph using 325 nm line of a He–Cd laser with 25 mW output as the excitation source.

3. Results and discussion

Figure 1 gives methane conversion and formaldehyde selectivity for $Sb_5V_{0.14-2.8}O/SiO_2$, $Sb_{10}V_{0.28--5.6}O/SiO_2$ and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts at 650 °C. Methane

conversion for Sb–V–O/SiO₂ catalysts is much higher than that for SbO_X/SiO₂ catalysts tested under same conditions [16]. The formaldehyde selectivity for Sb–V–O/SiO₂ catalysts decreases with V₂O₅ loading but the formaldehyde selectivity higher than 10% can still be achieved while methane conversion is higher than 20%. For Sb₅V_{1.4}O/SiO₂ catalyst, 23.8% methane conversion can be obtained with 11.0% HCHO selectivity. For Sb₁₀V_{1.12}O/SiO₂ catalyst, 15.0% methane conversion can be obtained with 15.5% formaldehyde selectivity. Thus one-pass formaldehyde yield at 2.6% (for Sb₅V_{1.4}O/SiO₂) and 2.5% (for Sb₁₀V_{1.12}O/SiO₂) can be achieved, respectively.

Figure 2 shows one-pass formaldehyde yield for 5 wt% Sb_2O_5/SiO_2 , VO_X/SiO_2 (0.56, 1.12 and 1.4 wt%), $Sb_5V_{0.56}O/SiO_2$, $Sb_5V_{1.4}O/SiO_2$ and $Sb_{10}V_{1.12}O/SiO_2$ catalysts at different temperatures. 5 wt% Sb₂O₅/SiO₂ catalyst shows the highest formaldehyde yield among 1-20 wt% SbO_x/SiO₂ catalysts [16] but the formaldehyde yield for 5 wt% Sb₂O₅/SiO₂ catalyst is much lower than that for VO_X/SiO_2 catalysts. The formaldehyde yield for VO_X/SiO_2 catalysts increases with increasing V_2O_5 loading and reaches its maximum (1.6%) while V₂O₅ loading is 1.12 wt% then drops with further increasing V₂O₅ loading. This formaldehyde yield value is very close to the typical results obtained on vanadium oxide catalysts in recent reports [5,9]. It can be seen that the combinational use of antimony and vanadium components evidently enhances formaldehyde yield and the increment of formaldehyde yield, comparing with VO_X/

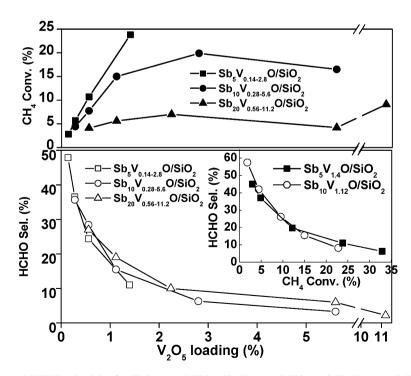


Figure 1. CH_4 conversion and HCHO selectivity for $Sb_5V_{0.14-2.8}O/SiO_2$, $Sb_{10}V_{0.28-5.6}O/SiO_2$ and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts at 650 °C; the inset is the HCHO selectivity for $Sb_{10}V_{1.12}O/SiO_2$ and $Sb_5V_{1.4}O/SiO_2$ catalysts as a function of CH_4 conversion. (0.2 g catalyst, total flow rate 0.07 mol (STY) h^{-1} , $CH_4/O_2/He = 2/1/7$)

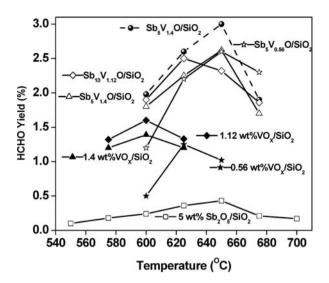


Figure 2. One pass HCHO yield in MSO. Solid lines: Sb_2O_5/SiO_2 (5 wt%), $VO_X/SiO_2(0.56, 1.12$ and 1.4 wt%), $Sb_5V_{0.56}O/SiO_2$, $Sb_5V_{1.4}O/SiO_2$ and $Sb_{10}V_{1.12}O/SiO_2$ catalysts (0.2 g catalyst, total flow rate 0.07 mol (STY) h^{-1} , $CH_4/O_2/He = 2/1/7$); dashed line: one pass HCHO yield for $Sb_5V_{1.4}O/SiO_2$ catalyst (0.2 g catalyst, total flow rate 0.09 mol (STY) h^{-1} , $CH_4/O_2/He = 2/1/11$).

 ${
m SiO_2}$ catalysts, is in the range of 50–150%. The formaldehyde yield up to 2.6% can be achieved on ${
m Sb_5V_{1.4}O/SiO_2}$ and ${
m Sb_5V_{0.56}O/SiO_2}$ catalysts. A formaldehyde yield up to 3.0% can be achieved on ${
m Sb_5V_{1.4}O/SiO_2}$ at 650 °C when total flow increases to 0.09 mol (STY) h⁻¹. This formaldehyde yield obtained on ${
m Sb-V-O/SiO_2}$ catalysts is higher than recent results for single metal oxide catalysts such as molybdenum oxide [15] and vanadium oxide [5,9] catalysts.

In figure 1, we also can see that the methane conversion for Sb₅V_{0.14-2.8}O/SiO₂ catalysts increase but the formaldehyde selectivity decreases with V₂O₅ loading. This trend for $Sb_5V_{0.14-2.8}O/SiO_2$ catalysts is similar to that for other catalysts in methane selective oxidation, e.g., molybdenum oxide and vanadium oxide catalysts. Differently, methane conversion for Sb₁₀V_{0.28–5.6}O/SiO₂ catalysts increases with V2O5 loading at first but decreases while V₂O₅ loading reaches 5.6 wt%. The methane conversion for Sb₂₀V_{0.56-11.2}O/SiO₂ catalysts increases with V₂O₅ loading and drops sharply while V₂O₅ loading reaches 5.6 wt% and then increases again. At the same time, formaldehyde selectivity for $Sb_{10}V_{5.6}O/SiO_2$ and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts decrease with increasing V₂O₅ loading. It can be inferred from the catalytic performance of Sb₁₀V_{0.28-5.6}O/SiO₂ and Sb₂₀V_{0.56-11.2}O/SiO₂ catalysts that a change of active species over these catalysts takes place while V₂O₅ loading is about 5.6 wt%.

Figure 3 gives the XRD patterns of V_2O_5 , Sb_2O_4 , Sb_2O_5 , and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts. No diffraction peak of bulk V_2O_5 , Sb_2O_4 or Sb_2O_5 can be observed in the patterns of $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts. This is agreed with the fact that no diffraction peak of bulk Sb_2O_5 , Sb_2O_4 or Sb_2O_3 can be observed in the XRD

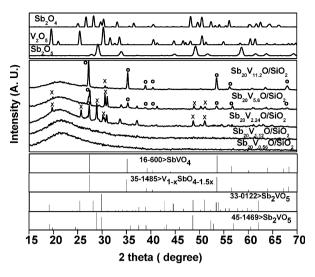


Figure 3. XRD patterns of V_2O_5 , Sb_2O_4 , Sb_2O_5 , and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts. (\times : Sb_2VO_5 ; o: $SbVO_4/VSb_{1-X}O_{4-1.5X}$).

patterns of Sb₂O₅/SiO₂ catalysts prepared from SbCl₅ even the loading of Sb₂O₅ reaches 20 wt% [16]. In the pattern of Sb₂₀V_{2,24}O/SiO₂ catalyst, the characteristic peaks of Sb-V mixed oxide in Sb₂VO₅ phase at 19.2°, 25.4°, 28.1°, 29.8°, 48.7° and 51.1° can be observed. These diffraction peaks become very weak when V₂O₅ loading increases to 5.6 wt\% and disappear when V₂O₅ loading reaches 11.2 wt%. The characteristic peaks of Sb-V mixed oxide in SbVO₄/VSb_{1-X}O_{4-1.5X} phase at 27.3°, 35°, 39.2°, 40.4°, 53.5°, 56.5° and 68.3° can be observed in the XRD patterns of Sb₂₀V_{5.6}O/SiO₂ and Sb₂₀V_{11.2}O/SiO₂ catalysts. We can know from XRD results that, on Sb₂₀V_{0.56-11.2}O/SiO₂ catalysts, antimony and vanadium component are mainly in Sb-V mixed oxide and a phase transform of Sb-V mixed oxide from Sb_2VO_5 to $SbVO_4/VSb_{1-X}O_{4-1.5X}$ phase takes place while V₂O₅ loading reaches 5.6 wt%. This may be the reason for the drop of methane conversion for Sb₂₀V_{0.56-11.2}O/ SiO_2 catalysts while V_2O_5 loading reaches 5.6 wt%. The Sb-V mixed oxide in Sb₂VO₅ phase is more active and selective in methane selective oxidation than SbVO₄/ $VSb_{1-X}O_{4-1.5X}$ phase.

Figure 4 shows the UV Raman spectra of V_2O_5 , Sb_2O_4 , Sb_2O_5 and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts. In the spectra of $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts, we can see four bands at 190, 260, 400 and 460 cm⁻¹ relevant to Sb_2O_4 . This indicates the formation of microcrystalline of Sb_2O_4 on catalysts surface because of the interaction between antimony and vanadium. When V_2O_5 loading is lower than 11.2 wt%, Sb_2O_4 microcrystalline and Sb-V mixed oxide co-exist on catalysts surface. When V_2O_5 loading increases to 11.2 wt%, little antimony oxide species exists on catalyst surface so no Raman band of Sb_2O_4 can be observed in the spectrum of $Sb_2O_{11.2}O/SiO_2$ catalyst. The relative intensity of the bands relevant to Sb_2O_4 increases with increasing V_2O_5 loading at first and then drops. This suggests that the amount of

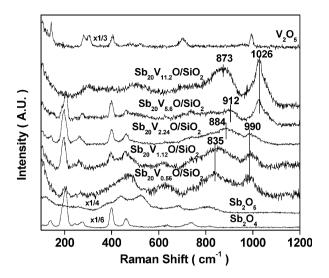


Figure 4. UV Raman spectra of V_2O_5 , Sb_2O_4 , Sb_2O_5 and $Sb_{20}V_{0.56-11.2}$ O/SiO₂ catalysts. $\lambda_{ex} = 325$ nm.

Sb–V mixed oxide on catalysts surface increases with increasing V_2O_5 loading.

The formation of Sb₂O₄ indicates the coexist of Sb⁵⁺ species and Sb³⁺ species so it is possible to observe the Raman bands for $Sb^{3+}O_X$ species in the spectra of Sb₂₀V_{0.56-11.2}O/SiO₂ catalysts. In the spectrum of Sb₂₀V_{0.56}O/SiO₂ catalyst, we can see two broad bands at 460 and 608 cm⁻¹, respectively. These two bands are characteristic bands of SiO₂ and highly isolated Sb³⁺Ox species, respectively. The relative intensity of these two bands decreases with increasing V₂O₅ loading, indicating the increasing amount of Sb-V mixed oxide on catalysts surface. In other researchers' work on bulk Sb-V mixed oxide, it has also been evidenced by XRD that the amount of Sb-V mixed oxide increases with decreasing Sb/V ratio [17]. It was also found that unsupported Sb-V mixed oxide catalysts contained several phases, including Sb-V mixed oxide in rutile phase and Sb₂O₄ [18].

In the spectra of $Sb_{20}V_{0.56-5.6}O/SiO_2$ catalysts, the bands at 835, 884, 912 and 990 cm⁻¹ are attributed to Sb-V mixed oxide phase according to very recent reports on Sb-V mixed oxide materials [14,17,19-21]. The bands at 835, 884 and 912 cm⁻¹, which have not been reported previously, are prominent because of resonance enhancement [20,21]. The band at 990 cm⁻¹ is assigned to the V = O stretching vibration mode of Sb-V mixed oxide and the bands in the range of 835–912 cm⁻¹ are assigned to the Sb-O-V stretching mode of Sb-V mixed oxide phase. In line with the XRD results, the band at 835 cm⁻¹ is assigned to the Sb-O-V symmetric stretching mode of Sb₂VO₅ phase and it shifts to 884 cm⁻¹ with decreasing Sb/V ratio. The band at 912 cm⁻¹ is assigned to the Sb–O–V asymmetric stretching mode of $SbVO_4/VSb_{1-X}O_{4-1.5X}$ phase. In the spectrum of Sb₂₀V_{5.6}O/SiO₂ catalyst, a characteristic band of the V=O stretching vibration mode at

1026 cm⁻¹ [19,21] can be observed in addition to the band at 912 cm⁻¹, indicating the formation of monomeric VO₄ species on the layer of Sb–V mixed oxide. In the spectrum of Sb₂₀V_{11.2}O/SiO₂ catalyst, another band at 873 cm⁻¹ appears other than the band at 1026 cm⁻¹. This band at 873 cm⁻¹ suggests the formation of polymeric (VO₃)_n species with V–O–V symmetric stretching mode [19,21] on the layer of Sb–V mixed oxide phase. The formation of polymeric (VO₃)_n species on Sb₂₀V_{11.2}O/SiO₂ catalyst can explain why the methane conversion for Sb₂₀V_{11.2}O/SiO₂ catalyst is higher than that for Sb₂₀V_{5.6}O/SiO₂ catalyst.

Although no diffaraction peak can be observed in the XRD patterns of $Sb_{10}V_{0.28-5.6}O/SiO_2$ and $Sb_5V_{0.14-2.8}O/$ SiO₂ catalysts, being similar to the analyzing of the Raman spectra of Sb₂₀V_{0.56-11.2}O/SiO₂ catalysts, we can obtain the structural information about the Sb-V mixed oxide on $Sb_{10}V_{0.28-5.6}O/SiO_2$ and $Sb_5V_{0.14-2.8}O/SiO_2$ catalysts according to the UV Raman spectra shown in figures 5 and 6. In the Raman spectra of Sb₅V_{0.14-2.8}O/ SiO₂ and Sb₁₀V_{0,28-5,6}O/SiO₂ catalysts, we can see that the relative intensity of the bands relevant to SiO2 and highly isolated Sb³⁺ oxidic species decreases with increasing V₂O₅ loading but the relative intensity of the bands relevant to Sb-V mixed oxide increases with increasing V₂O₅ loading. This indicates the amount of Sb-V mixed oxide on both Sb₁₀V_{0.28-5.6}O/SiO₂ and Sb₅V_{0.14-2.8}O/SiO₂ catalysts increases with increasing V₂O₅ loading.

In figure 5, two bands at 835 and 990 cm $^{-1}$ can be observed in the spectra of Sb $_{10}$ V $_{0.28}$ O/SiO $_2$, Sb $_{10}$ V $_{0.56}$ O/SiO $_2$ and Sb $_{10}$ V $_{1.12}$ O/SiO $_2$ catalysts. These two bands indicates the formation of Sb $_-$ V mixed oxide in Sb $_2$ VO $_5$ phase on the surface of these three catalysts. When V $_2$ O $_5$ loading increases to 2.8 and 5.6 wt 6 , the band at 835 cm $^{-1}$ shifts to 884 and 912 cm $^{-1}$, respectively. This shift of Raman band reflects the transform of Sb $_-$ V mixed

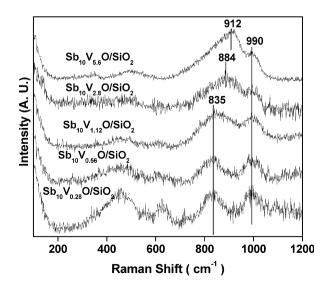


Figure 5. UV Raman spectra of $Sb_{10}V_{0.28-5.6}O/SiO_2$ catalysts. $\lambda_{ex}=325$ nm.

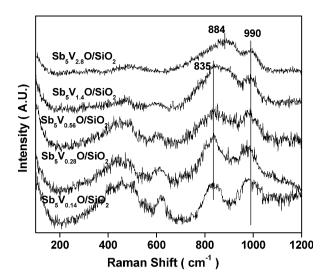


Figure 6. UV Raman spectra of $Sb_5V_{0.14-2.8}O/SiO_2$ catalysts. $\lambda_{ex}=325$ nm.

oxide from Sb₂VO₅ to SbVO₄/VSb_{1-X}O_{4-1.5X} phase as that taking place on Sb₂₀V_{0.56-11.2}O/SiO₂ catalysts. The Sb–V mixed oxide on Sb₁₀V_{2.8}O/SiO₂ catalyst has a transition structure between Sb₂VO₅ and SbVO₄/VSb_{1-X}O_{4-1.5X} phase but the Sb–V mixed oxide on Sb₁₀V_{5.6}O/SiO₂ catalyst is in SbVO₄/VSb_{1-X}O_{4-1.5X} phase. This can explian why the methane conversion for Sb₁₀V_{0.28-5.6}O/SiO₂ catalysts increases with V₂O₅ loading at first but decreases while V₂O₅ loading reaches 5.6 wt%.

In figure 6, two bands at at 835 and 990 cm⁻¹ can be observed in the spectra of Sb₅V_{0.14}O/SiO₂, Sb₅V_{0.28}O/ SiO₂, Sb₅V_{0.56}O/SiO₂ and Sb₅V_{1.4}O/SiO₂ catalysts, indicating the formation of Sb-V mixed oxide in Sb₂VO₅ phase. In the spectrum of Sb₅V₂₈O/SiO₂ catalyst, the band at 835 cm⁻¹ shifts to 884 cm⁻¹. We can know that no Sb-V mixed oxide in SbVO₄/VSb_{1-X}O_{4-1 5X} phase but only the Sb-V mixed oxide within a transition structure between Sb₂VO₅ and SbVO₄/VSb_{1-X}O_{4-1.5X} phase has formated on Sb₅V_{2.8}O/SiO₂ catalyst. This should be the reason why the methane conversion for Sb₅V_{0.14-2.8}O/ SiO₂ catalysts always increase with V₂O₅ loading as shown in figure 1. The phase transform of Sb-V mixed oxide with decreasing Sb/V ration from Sb₂VO₅ to SbVO₄/VSb_{1-X}O_{4-1.5X} phase is less favoured on Sb₅V_{0.14-} $_{2.8}O/SiO_2$ catalysts than on $Sb_{10}V_{0.28-5.6}O/SiO_2$ and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts. This may because the dispersion of Sb-V mixed oxide species on Sb₅V_{0.14-2.8}O/ SiO_2 catalysts is much better than that on $Sb_{10}V_{0.28-5.6}O/$ SiO_2 and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts and so the interaction between Sb-V mixed oxide and silica on Sb₅V_{0.14-2.8}O/SiO₂ catalysts is stronger than that on $Sb_{10}V_{0.28-5.6}O/SiO_2$ and $Sb_{20}V_{0.56-11.2}O/SiO_2$ catalysts.

4. Conclusions

In methane selective oxidation with O₂ as oxidant, Sb-V-O/SiO₂ catalysts show the advantages of high

activity from VO_X/SiO₂ catalysts as well as high formaldehyde selectivity from SbO_X/SiO₂ catalysts. Higher one-pass formaldehyde yield can be obtained on Sb–V–O/SiO₂ catalysts than on single metal oxide catalysts such as vanadium oxide and antimony oxide catalysts. One-pass formaldehyde yield up to 3% was obtained on Sb–V–O/SiO₂ catalysts at 650 °C. The better catalytic behavior of Sb–V–O/SiO₂ catalysts than that of VO_X/SiO₂ or SbO_X/SiO₂ catalysts results from the formation of Sb–V mixed oxide. A phase transform of Sb–V mixed oxide with decreasing Sb/V ratio from Sb₂VO₅ to SbVO₄/VSb_{1-X}O_{4-1.5X} phase takes place on Sb–V–O/SiO₂ catalysts. The Sb–V mixed oxide in Sb₂VO₅ phase is more active and selective in methane selective oxidation than that in SbVO₄/VSb_{1-X}O_{4-1.5X} phase.

Acknowledgments

The financial supports from the National Natural Science Foundation of China (NSFC Grant 20273069) and the BP-China project for clean energy facing the future (CEFTF) are acknowledged.

References

- [1] R.H. Crabtree, Chem. Rev. 5 (1995) 987.
- [2] J.H. Lunsford, Catal. Today 63 (2000) 165.
- [3] K. Tabata, Y. Teng, T. Takemoto, E. Suzuki, M. Bañares, M.A. Peña and J.L.G. Fierro, Catal. Rev.-Sci. Eng. 44 (2002) 1.
- [4] K. Otsuka and Y. Wang, Appl. Catal. A 222 (2001) 145.
- [5] V. Fornés, C. López, H.H. López and A. Martínez, Appl. Catal. A 249 (2003) 345.
- [6] X.X. Wang, Y. Wang, Q.H. Tang, Q. Guo, Q.H. Zhang and H. Wan, J. Catal. 217 (2003) 457.
- [7] F. Arena, G. Gatti, S. Coluccia, G. Martra and A. Parmaliana, Catal. Today 91–92 (2004) 305.
- [8] J.A. Barbero, M.C. Alvarez, M.A. Bañares, M.A. Peña and J.L. Fierro, Chem. Commun. (2002) 1184.
- [9] H. Berndt, A. Martin, A. Brückner, E. Schreier, D. Müller, H. Kosslick, G.-U. Wolf and B. Lücke, J. Catal. 191 (2000) 384.
- [10] V.D. Sokolovskii, N.J. Coville, A. Parmaliana, I. Eskendirov and M. Makoa, Catal. Today 42 (1998) 191.
- [11] A. de Lucas, J.L. Valverde, L. Rodriguez, P. Sanchez and M.T. Garcia, Appl. Catal. A 203 (2000) 81.
- [12] T.J. Hall, J.S.J. Hargreaves, G.J. Hutchings, R.W. Joyner and S.H. Taylor, Fuel Proc. Tech. 42 (1995) 151.
- [13] A. de Lucas, J.L. Valverde, P. Cañizares and L. Rodrigues, Appl. Catal. A 172 (1998) 165.
- [14] M.O.G. Pérez, J.L. Fierro, M.A. Vicente and M.A. Bañares, J. Catal. 206 (2002) 339.
- [15] S.J. Miao, L. Liu, Y.X. Lian, X.X. Zhu, S.T. Zhou, Y. Wang and X.H. Bao, Catal. Lett. 97 (2004) 209.
- [16] H.D. Zhang, P.L. Ying, J. Zhang, C.H. Liang, Z.C. Feng and C. Li, Stud. Surf. Sci. Catal. 147 (2004) 547.
- [17] T. Shishido, A. Inoue, T. Konishi, I. Matsuura and K. Takehira, Catal. Lett. 68 (2000) 215.
- [18] H.W. Zanthoff, W. Grünert, S. Buchholz, M. Heber, L. Stievano, F.E. Wagner and G.U. Wolf, J. Mol. Catal. A 162 (2000) 443.
- [19] M.A. Bañares and I.E. Wachs, J. Raman Spectr. 33 (2002) 359.
- [20] G. Xiong, V.S. Sullivan, P.C. Stair, G.W. Zajac, S.S. Trail, J.A. Kaduk, J.T. Golab and J.F. Brazdil, J. Catal. 230 (2005) 326.
- [21] C. Li, J. Catal. 216 (2003) 203.