Redox properties of CeO₂ and Pt-Rh/CeO₂ studied by TAP method

Zhaoxia Song, Hiroyasu Nishiguchi, Wei Liu, Hiroshi Yamada, Akihide Takami, Kumiko Kudo, Katsutoshi Nagaoka, and Yusaku Takita*

Department of Applied Chemistry Faculty of Engineering, Oita University, Dannoharu 700, Oita, 870-1192, Japan

Received 2 March 2006; accepted 20 July 2006

Redox properties of CeO₂ and Pt-Rh/CeO₂ were studied by temporal analysis of products (TAP) method using alternative pulses of CO and O₂. A portion of pulsed CO was oxidized to CO₂ and a portion of CO was adsorbed on the surface. Pulsing ¹⁸O₂ onto the catalyst which has surface species derived from CO, evolved CO₂ contained no ¹⁸O suggesting that the surface species will be carbonate ions.

KEY WORDS: redox property; ceria; temporal-analysis-of-products; noble metal; promotion effect.

Ceria has been widely used as a catalyst support for three-way catalysts in order to enlarge the efficient operating air/fuel (A/F) window. Fast redox character of CeO₂ is expected to work as an oxygen reservoir [1,2] usually; TPR and TPD are used for evaluation of oxidation activity and oxygen storage capacity of catalysts. However, it takes several 10 min to obtain a spectrum and data contains surface and bulk information. The data is sometimes far from the actual situation of catalysis. Temporal analysis of products (TAP) reactor system, an important tool for investigating 'gas-solid' reactions, adopts shots of different gases with a very short interval. Therefore, TAP analysis would be helpful to analyze catalytic reaction on metal oxides.

CeO₂ was provided by (Anan Chem. Co., Japan). The loading of Pt and Rh for Pt-Rh/CeO₂ are 0.19 wt% and 0.56 wt%, respectively. The Pt-Rh/SiO₂ was also prepared with same loading amount of Pt and Rh (SiO₂, Degussa, Aerosil, OX-50). CeO₂ and Pt-Rh/CeO₂ are confirmed to be cubic fluorite-type structure. The BET surface specific areas (SSA) of CeO₂, Pt-Rh/CeO₂ and Pt-Rh/SiO₂ are 118, 116 and 50 m²/g, respectively.

TAP reactor system was used for CO-O₂ pulse reaction. Four solenoid-operating gas-valves are arranged to supply a small amount of gas pulse. A quartz tube reactor with an internal diameter of 4 mm is used. Samples were pressed, crushed, and sieved with the size of 32–60 mesh. About 50 mg of a sample was packed in the reactor located in the center of an electrical furnace. The reactor was evacuated to $10^{-2} \sim 10^{-3}$ Pa by a rotary pump. A capillary tube, of which one end is located just after the catalyst bed, is used for introducing gaseous products into a mass spectrometer. The chamber of

*To whom correspondence should be addressed. E-mail: takita@cc.oita-u.ac.jp mass spectrometer was kept high vacuum ($\sim 10^{-6}$ Pa) by a turbo-molecular pump. Prior to measurements, the catalysts are evacuated at 500 °C for 3 h and then fully oxidized by O_2 pulses. The accurate amount of each pulse is determined by measuring the pressure of gases in a vessel with known volume after injecting $50 \sim 100$ pulses with a high accuracy pressure gauge. And the accurate amount of CO (and O_2) consumed and CO_2 formed upon each pulse are determined by mass spectrometer. Peaks of CO (m/e = 28), O_2 (m/e = 32), and CO_2 (m/e = 44) are monitored. The relative sensitivity of CO_2 gave m/e = 28 peak as a fragment peak, which is 11% of the parent peak area of m/e = 44, the amount of CO was corrected by this amount.

Approaching to the actual operating condition of automotive exhaust, redox properties of samples were studied using alternative CO and O₂ pulses. The alternate pulse TAP experiments were carried out using the feed stream condition (O2:0.12 MPa, ON 10 ms $(10.6 \ \mu \text{mol})$, OFF 15 s; CO:0.12 MPa, ON 10 ms (13.8 μ mol), OFF 15 s, delay 4 s). Figure 1 shows the time course of the MS signals of the reactants and products. For CeO₂, when 266 μ mol/g of CO pulse was introduced at 500 °C (Figure 1(b)), the CO uptake was 221 μ mol/g, 137 μ mol/g of CO₂ was evolved, then 84 μ mol/g of CO was absorbed. After the first CO pulse, 204 μ mol/g of O₂ pulse was introduced to the sample. 98 μ mol/g of O₂ was consumed, 82 μ mol/g of CO₂ and 3 μ mol/g of CO were evolved. Therefore, all of absorbed CO was released. CO₂ was observed to produce upon each CO and O₂ pulse in the oscillating condition. The former CO₂ production is due to CO oxidation by reacting with oxygen atoms of CeO₂. The adsorbed CO was responsible for the appearance of CO₂ production upon O₂ pulses. The CeO₂ is completely recovered the

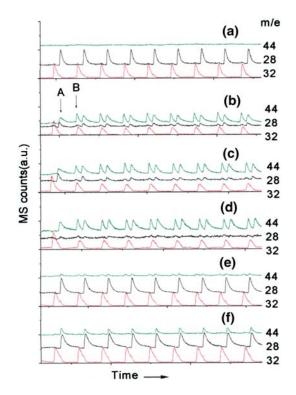


Figure 1. Mass spectral response of selected peaks in the alternative reaction by CO and O₂ pulses. (a) CeO₂ at 200 °C; (b) CeO₂ at 500 °C; (c) Pt-Rh/CeO₂ at 200 °C; (d) Pt-Rh/CeO₂ at 500 °C; (e) Pt-Rh/SiO₂ at 200 °C; (f) Pt-Rh/SiO₂ at 500 °C; A: 1st CO pulse, B: 1st O₂ pulse.

initial state after the 2nd O_2 pulse. From 2nd to 10th CO pulses, the amount of CO uptake seems to take a steady value (204 μ mol/g). The reduction and re-oxidation of the sample are reversible. A cyclic steady state is very quickly reached in the transient experiment. The steady state values (μ mol/g) measured by alternate pulses of CO and O_2 are summarized in Table 1. The total of CO_2 production upon CO and O_2 pulses is consistent with that of CO uptake. And a consistence is also obtained between the CO and O uptake. The same experiment of Pt-Rh/CeO₂ at 500 °C (Figure 1(d)) gave that, in the

Table 1 Steady state values (μ mol/g) measured by alternative pulses of CO and O_2

Sample	T	CO pulses			O ₂ pulses		
	/°C	CO ^a	CO ₂ ^b	COc	O_2^a	CO ₂ ^b	COb
CeO ₂	200	0	0	0	0	0	0
	500	204	118	86	98	82	3
Pt-Rh/CeO ₂	200	213	123	90	108	81	3
	500	250	162	88	119	88	0
Pt-Rh/SiO ₂	200	28	12	16	11	10	0
	500	40	38	2	18	0	0

Each CO pulse = 13.8 μ mo1, each O₂ pulse = 10.6 μ mo1.^a amount of CO and O₂ uptake, ^b amount of CO₂ and CO evolved, ^c amount of CO adsorbed.

cyclic steady state, CO uptake was increased to 250 μ mol/g, 122% of the value for CeO₂, Selectivity for CO₂ evolution and CO absorption are similar to those for CeO₂. Redox reaction at 200 °C was also studied on CeO₂ and Pt-Rh/CeO₂, No CO consumption was observed over CeO₂ (Figure 1 (a)). However, Pt-Rh/ CeO₂ showed high activity of CO oxidation (Figure 1(c)). The CO uptake upon CO pulses decreased to 85% of that at 500 °C. The presence of noble metals significantly lowered the reduction temperature of and increased the amount of CO (and/or O2) uptake and CO₂ production. It is clear that supporting Pt-Rh improves the redox property of CeO₂. The following possibilities are considered: (1) adsorption of CO begins on noble metals; (2) adsorbed CO is oxidized to CO₂ at the interface of supported metals and CeO₂, and the reactive O on the CeO2 surface is increased by supporting noble metals; (3) disproportionation of CO takes place over noble metals. The possibility of (1) could be ruled out when temperature is as high as 500 °C. It was known that the amounts of Pt and Rh on the sample were about 9.7 and 54.4 μ mol/g, respectively, which much smaller than the amount of CO uptake. To clarify the role of supported noble metals, alternate pulse experiments were carried out on Pt-Rh supported SiO₂ (Figure 1(e), (f)) for comparison. At 500 °C, only 40 μ mol/g of CO reacted with the sample and almost all CO was oxidized to release out as CO₂. Since residual C was very small, there is no possibility to proceed disproportionation of CO: 2CO \rightarrow C + CO₂. So that CO₂ may be formed from the reaction of adsorbed CO and oxidized noble metal (PtO, Rh₂O₃). Similar enhancement of the reducibility of CeO₂ by supporting Pt was observed and the strong Pt—CeO₂ interactions was estimated [3]. The reason for increase in the reducibility of CeO₂ by supporting noble metals is not clear, however, we tentatively suppose that the supported noble metals would give partial negative charge to Ce⁴⁺ ions, and the slightly reduced CeO₂ ions may be more reducible than pure CeO₂.

Finished the introduction of CO pulses, significant amount of CO was retained on the CeO₂ and Pt-Rh/ CeO₂, and could not be removed by He pulses. What is the adsorbed structure of CO? The formation of carbon residuals was interpreted by carbonates species CO₃ [2,4–7] or/and carbon deposit [6–9]. It was reported that the CO disproportionation (2CO \rightarrow C + 2CO₂) only took place on strongly reduced Pt/ceria and CO₂ was continuously produced up to 100 pulses under successive pulses of CO [7]. Various structured species are proposed over various catalysts. However, it is important to collect the information on CeO2 and Pt-Rh/CeO2. It emerges three possibilities. The first is the formation of C by disproportionation of CO because the formed amount of CO₂ is about one half of the amount of consumed CO. The second is molecular type adsorbate as CO. However, adsorption of molecular type CO is

Table 2 Oxidation of absorbed. CO by $^{18}\mathrm{O}_2$ over CeO₂

Pulse No.	CO pulse ^a			¹⁸ O ₂ pulses ^b				
	COc	CO ₂ ^d	COe	¹⁸ O ₂ ^c	CO ₂ ^d	CO ¹⁸ O ^d	$C^{18}O_2^d$	
CO 1	234	135	99					
$^{18}O_2$ 1				36	34	0	0	
$^{18}O_{2}$ 2				35	32	0	0	
¹⁸ O ₂ 3 ¹⁸ O ₂ 4				33	28	0	0	
$^{18}O_2 4$				13	5	0	0	
$^{18}O_2^{-}$ 5				1	0	0	0.	
Total	234	135	99	118	99	0	0	

Sample: CeO₂, 50.4 mg, ^a CO pulse = 274 μ mol/g, ^b 18 O₂ pulse = 36 μ mol/g, ^c amount of CO and 18 O₂ uptake, ^d amount of CO₂, CO¹⁸O and C¹⁸O₂ evolved, ^e amount of CO adsorbed.

unlikely at high temperature of 500 °C. The third is the carbonate type adsorbate, CO₃²⁻ To estimate the adsorbed structure, a tracer study using ¹⁸O₂ was carried out. When first CO pulse was introduced to CeO₂, significant amount of CO was adsorbed. After the CO pulse, gaseous ¹⁸O₂ that is 1/3 of the adsorbed amount of CO were pulsed into reactor for 5 times and the ¹⁸O distribution was measured for the formed CO₂ molecules. The results are shown in Table 2. CO₂ was evolved upon the pulses of ¹⁸O₂, and no ¹⁸O was observed in the formed CO₂. This result strongly suggested that the CO was adsorbed as CO₃²⁻ on the ceria surface. If CO was adsorbed as CO or carbon atom(s)

on the ceria, when it was oxidized by gaseous $^{18}O_2$, it would choose the added ^{18}O atom rather than lattice oxygen ions. Thus the existence of adsorbed C species is unlikely. We concluded that CO was adsorbed on the ceria as CO_3^{2-} at 500 °C:

$$CO(g) + 20^{2}(1) \rightarrow CO_{3}^{2-}$$

$$CO_3^2 + 1/2^{18}O_2(g) \rightarrow CO_2(g) + {}^{18}O^{2-}(1) + O^{2-}(1)$$

where g: gas, 1: lattice.

References

- [1] H.C. Yao and Y.F. YuYao, J. Catal. 86 (1984) 254.
- [2] A. Trovarelli, Catal. Rev. Sci. Eng. 38 (1996) 439.
- [3] N. Kkuta, N. Morishima, M. Kotobuki, T. Iwase, T. Mizushima, Y. Sato and S. Matsuura, Appl. Surf. Sci. 121/122 (1997) 408.
- [4] C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya and T. Onisi, J. Chem. Soc., Faraday Trans. 1 85 (1989) 929.
- [5] M. Boaro, F. Giordano, S. Recchia, V. Dal Santo, M. Giona and A. Trovarelli, Appl.Catal. B 52 (2004) 225.
- [6] A. Holmgren and B. Andersson, J. Catal. 178 (1998) 14.
- [7] A. Holmgren, B. Andersson and D. Duprez, Appl. Catal. B 22 (1999) 215.
- [8] S. Bedrane, C. Descorme and D. Duprez, Catal. Today 75 (2002)
- [9] N. Hickey, P. Fornasiero, J. Kaspar, J.M. Gatica and S. Bernal, J. Catal. 200 (2001) 181.