The Oxidative Bromination of Methane Over Rh/SiO₂ Catalyst

Feng Yang · Zhen Liu · Wen Sheng Li · Ting Hua Wu · Xiao Ping Zhou

Received: 2 January 2008 / Accepted: 10 March 2008 / Published online: 19 April 2008 © Springer Science+Business Media, LLC 2008

Abstract Methyl bromide was synthesized by reacting methane with oxygen and hydrogen bromide over Rh/SiO₂ catalyst. The reaction started from the oxidation of HBr to form active bromine species (Br[•] radicals and Br* surface species), which in turn reacted with CH₄ to form CH₃ radicals and CH₃* surface species. These CH₃• and CH₃* species reacted with the active bromine species to form CH₃Br and CH₂Br₂. The presence of HBr inhibited the deep oxidation and the steam reformation of CH₄ and therefore, guaranteed the high selectivity of CH₃Br. In the presence of HBr, CO was formed from the oxidation and steam reformation of CO₂ was formed from the oxidation and steam reformation of CO over Rh/SiO₂ at reaction temperature higher than 560 °C.

Keywords Methane oxidative bromination · Catalyst · Methyl bromide · Steam reformation

1 Introduction

The oxidative bromination of alkanes as an alternative approach for light alkane conversion was investigated in

F. Yang · T. H. Wu () · X. P. Zhou () Institute of Physical Chemistry, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University, Jinhua 321004, China e-mail: thwu@zjnu.cn

X. P. Zhou

e-mail: zhouxp@microvast.com.cn

Z. Liu · W. S. Li · X. P. Zhou Department of Chemical Engineering, Hunan University, Changsha 410082, China

recent years [1-12]. In Schweizer et al's patent [13], a process was described to halogenate CH₄ to CH₃X (X is halogen), and then convert CH₃X to higher hydrocarbons or acetic acid. However, the oxidative chlorination of methane (HCl as chlorination agent) rather than the oxidative bromination of methane (OBM) was employed for the illustration in the patent. In our previous investigation, higher hydrocarbons [8], dimethyl ether [9], and acetic acid [10, 11] were synthesized through HBr mediated reactions. In all of these processes, high methane conversion and product selectivities were reached. The common reaction in these processes is the OBM reaction. In dimethyl ether or higher hydrocarbon synthesis, CH₄ was converted to the intermediate CH₃Br in the first reaction, and then CH₃Br was converted to dimethyl ether or higher hydrocarbons [8, 9]. Hence, in this case, CH₃Br is the desired product of the OBM reaction. In acetic acid synthesis, CH4 was converted to the intermediates CH₃Br and CO in the first reaction, and then CH3Br and CO were converted to acetic acid in the consecutive reactions. Hence, in acetic acid synthesis, CH₃Br and CO are the desired products of the OBM reaction [10, 11]. Generally, the hydrogen halides (HCl and HBr) involved reactions are understood as halogen radical reactions. However, in our previous investigation, it was found that the catalysts acted very important role in OBM reaction. Hence, the surface reactions should be the major reactions in CH₃Br and CO formation. In the previous investigations, the reaction pathways were not systematically investigated. In order to better understand the reaction and design high efficient catalysts for targeted product production, the current investigation is dedicated to the investigation of the reaction pathways for OBM reaction over the Rh/SiO₂ catalyst.

2 Experimental

2.1 Catalyst Preparation

The catalyst Rh/SiO₂ (0.406 wt% Rh in SiO₂) was prepared according to the following process. An oxalic acid solution (solution A) was prepared by dissolving 6.30 g of oxalic acid in 100 mL of deionized water. 34.722 g of $Si(OC_2H_5)_4$ and 0.0828 g of RhCl₃ were added to solution A to obtain a mixture. The mixture was stirred at room temperature for 4 h to obtain a single phase solution B. Solution B was dried at 120 °C for 4 h to obtain a solid. The solid sample was heated from room temperature to 900 °C in a period of 4 h, calcined at 900 °C for 10 h, and cooled down to room temperature in ambient conditions to obtain the Rh/SiO₂ catalyst. The catalyst was crushed and sieved to particle size between 20 and 60 meshes.

2.2 Reactions

The OBM and other reactions described in the Sect. 3 were carried out in a quartz-tube reactor (ID 1.0 cm, length 60 cm, hot zone 30.0 cm) packed with 5.00 g of Rh/SiO $_2$ catalyst (40–60 mesh) with both ends filled with quartz sand (20–40 mesh). In the blank testing, the reactor tube was only packed with quartz sand. The flows of gas and liquid reactants and the reaction conditions will be given in the corresponding sections. The gas effluents and the liquid products were analyzed on a GC (Agilent 6890N) with thermal conductivity detectors and a GC/MS (6890N/5973N).

We measure the relative correction factors on GC (Agilent 6890N), as a result of Table 1.

The relative correction factors of N_2 , CH_4 , CH_3Br , CH_2Br_2 , CO and CO_2 are signed as f_0 , f_1 , f_2 , f_3 , f_4 , f_5 , and the peak areas of N_2 , CH_4 before reaction signed as A_0 , A_1 , then the peak areas of N_2 , CH_4 , CH_3Br , CH_2Br_2 , CO and CO_2 after reaction signed as A_0' , A_1' , A_2' , A_3' , A_4' , A_5' . So we have follow calculation of conversion and selectivities.

 CH_4 conversion (N_2 as the internal standard):

$$X_{CH_4}\% = (1 - \frac{A_0 \times A_1'}{A_1 \times A_0'}) \times 100\%$$

Table 1 The relative correction factors

Substances	N_2	CH ₄	CH ₃ Br	CH_2Br_2	СО	CO ₂
Signs The relative correction factors	0.0	f ₁ 1.89		f ₃ 2.49	f ₄ 2.42	f ₅ 1.48

TCD, carrier: H₂

CH₃Br selectivity:

$$Y_{CH_3Br}\% = \frac{f_2 \times A_2'}{f_2 \times A_2' + f_3 \times A_3' + f_4 \times A_4' + f_5 \times A_5'} \times 100\%$$

CH₂Br₂ selectivity:

$$Y_{CH_2Br_2}\% = \frac{f_3 \times A_3'}{f_2 \times A_2' + f_3 \times A_3' + f_4 \times A_4' + f_5 \times A_5'} \times 100\%$$

CO selectivity:

$$Y_{CO}\% = \frac{f_4 \times A_4'}{f_2 \times A_2' + f_3 \times A_3' + f_4 \times A_4' + f_5 \times A_5'} \times 100\%$$

CO₂ selectivity:

$$Y_{CO_2}\% = \frac{f_5 \times A_5'}{f_2 \times A_2' + f_3 \times A_3' + f_4 \times A_4' + f_5 \times A_5'} \times 100\%$$

3 Results and Discussion

3.1 The Characterization of Catalyst

The XPS analysis shows that, in fresh catalyst, the rhodium was in Rh³⁺ state and in the used catalyst, the rhodium was in element state. Hence, we write the catalyst as Rh/SiO₂ in the following sections. The XRD characterization showed that both the fresh and used catalyst contained cristobalite phase [8].

3.2 The OBM Reaction Over Rh/SiO₂

The direct reaction between methane and bromine shows that CH₄ reacted with Br₂ to form CH₃Br at room temperature (mixed at room temperature and kept for 24 h, CH₃Br was detected by GC/MS). This reaction is the wellknown bromine radical reaction. When HBr/H₂O (40 wt%, 6.0 mL/h) reacted with O2 (5.0 mL/min) over Rh/SiO2 (5.00 g), there was significant amount of Br₂ formed at temperature higher than 270 °C. These investigations indicate that it is possible to produce CH₃Br by the reaction of CH₄ with O₂ and HBr over the Rh/SiO₂ catalyst. In a reaction, when CH₄ (20.0 mL/min), O₂ (5.0 mL/min), N₂ (5.0 mL/min), and HBr/H₂O (6.0 mL/h, 40% liquid) were fed into the Rh/SiO₂ catalyst bed, the methane conversion and product selectivities are shown in Fig. 1. The reaction occurred at temperature higher than 460 °C over Rh/SiO₂ catalyst. At 480 °C, CH₄ conversion reached 0.31% and only CH₃Br was detected as product. CO was formed at temperature higher than 480 $\,^{\circ}$ C. The formation of CO₂ was observed at temperature above 620 °C. There was no hydrogen formation in the reaction. Below 660 °C, the main products were CH₃Br and CH₂Br₂. The total selectivity of CO and CO₂ was below 10.0%. The results

228 F. Yang et al.

indicate that CH_3Br is the primary product (since CH_3Br is the only product at relatively lower reaction temperature). CH_2Br_2 and CO might be formed in the consecutive reactions of CH_3Br . CO_2 might be formed from the oxidation of CO.

3.3 The Oxidation of Methane Over Rh/SiO₂

In the absence of HBr, when CH_4 (20.0 mL/min), O_2 (5.0 mL/min), N_2 (5.0 mL/min), and H_2O (6.0 mL/h, liquid) were fed into the catalyst bed, there was no reaction observed below 480 °C. Methane conversion reached 0.22% at 500 °C. Only H_2 and CO were formed as products between 480 and 520 °C. Above 520 °C, except H_2 and CO, CO_2 was also formed as the product (Fig. 2). The phenomenon indicates that CO_2 came from the oxidation of CO. Comparing the results of Fig. 1 with that of Fig. 2, the presence of HBr partially blocked the deep oxidation of methane (with low CO and CO_2 selectivities).

3.4 The Steam Reformation of Methane Over Rh/SiO₂

The results of CH₄ steam reformation over catalyst Rh/SiO₂ were shown in Fig. 3. CO and H₂ were obtained as the products between 500 and 680 °C. The steam reformation of methane occurred at temperature higher than 540 °C, which was higher than that in methane oxidation (520 °C Fig. 2). Hence, when without HBr and in the presence of O₂, CO might be formed from the oxidation and the steam reformation of CH₄ over catalyst at temperature higher than 540 °C. Since the conversion of CH₄ steam reformation is low (Fig. 3, only 3.3% of CH₄ conversion was obtained at 680 °C), the major part of CO (in Fig. 2) might be formed from the oxidation of CH₄.

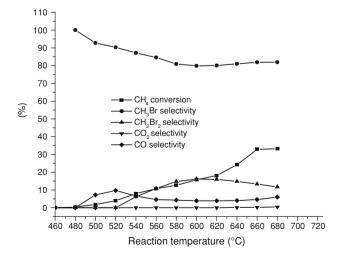
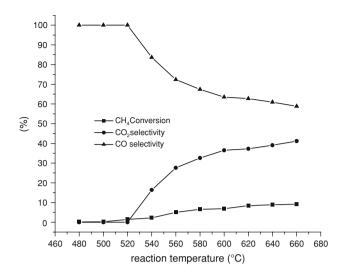



Fig. 1 OBM reaction over Rh/SiO $_2$ catalyst (5.00 g) at reactant flows: CH $_4$ 20.0 mL/min, O $_2$ 5.0 mL/min, N $_2$ 5.0 mL/min, and liquid HBr/H $_2$ O (40 wt%) 6.0 mL/h

Fig. 2 Methane oxidation over Rh/SiO $_2$ catalyst (5.00 g) at reactant flows: H_2O 6.0 mL/h, CH_4 20.0 mL/min, O_2 5.0 mL/min, and O_2 5.0 mL/min (used as internal standard)

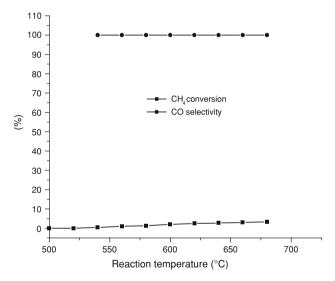
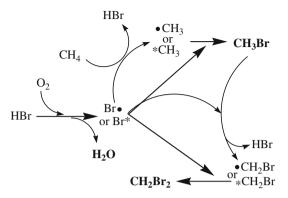



Fig. 3 The steam reformation of CH_4 over Rh/SiO_2 catalyst (5.00 g) at reactant flows: CH_4 20.0 mL/min, N_2 5.0 mL/min, and H_2O 6.0 mL/min (liquid)

Comparing the results of Fig. 1 with that of Fig. 2, the presence of HBr switched the deep oxidation of methane to the direction of CH₃Br formation reaction. The possible reason could be that the adsorption of HBr over the catalyst poisoned the deep oxidation of methane. The above investigations show that the reaction pathway might be that HBr reacts with O₂ to form active bromine species, such as the bromine radicals (Br*) and the adsorbed species (Br*) over the surface of the catalyst, then the active bromine species react with CH₄ to form HBr and methyl species (CH₃* radicals and the adsorbed surface species CH₃*), and then the methyl species react with active bromine species to form CH₃Br and CH₂Br₂ as shown in Scheme 1. In order

to identify if the gas phase or the surface reactions are the major reactions in OBM reaction, farther investigations were conducted in the following sections.

Scheme 1 Reaction pathways for CH₃Br and CH₂Br₂ formation

3.5 The Gas Phase OBM Reaction Over Quartz Sand

In order to obtain the information of the gas phase reaction, the OBM reaction was run at temperatures between 340 and 660 °C with a feeding of CH₄ (20.0 mL/min), O_2 (5.0 mL/min), N_2 (5.0 mL/min, used as internal standard), and HBr/H₂O (40.0 wt%, 6.0 mL/min) over quartz sands (40–60 mesh). The results are shown in Fig. 4. The reaction over quartz sands shows that the methane conversion was much lower (below 10.0%) than that obtained over Rh/SiO₂. The reaction started from 500 °C, which was higher than that over Rh/SiO₂ (the reaction started from 480 °C). The major product was CO below 530 °C. When switching the reaction stream to CH₄ (20.0 mL/min), O₂ (5.0 mL/min),

Fig. 4 Methane oxidative bromination over quartz sand at reactant flows: CH_4 20.0 mL/min, O_2 5.0 mL/min, N_2 5.0 mL/min, and HBr/ H_2O (40 wt%, liquid) 6.0 mL/h

 N_2 (5.0 mL/min), and H_2O (6.0 mL/h), there was no reaction observed between 400 and 680 °C over quartz sand. Hence, the gas phase reaction with HBr feeding was also initiated from the bromine radical reaction. The investigations show that the surface reactions are the major reactions in the formation of CH_3Br and CH_2Br_2 .

3.6 Methane Steam Reformation in the Presence of HBr Over Rh/SiO₂

In the OBM reaction shown in Fig. 1, CO was formed as the major by-product (CH₃Br and CH₂Br₂ are the desired products). In order to clarify what kinds of reactions lead to the formation of CO, we carried out reactions between CH₄ (20.0 mL/min) and HBr/H₂O (40 wt%, 6.0 mL/h liquid) keeping N₂ (5.0 mL/min) as the internal standard. There was no reaction observed over Rh/SiO₂ at temperature lower than 680 °C. Comparing with the results of Fig. 3 (without HBr, in which H₂ and CO were formed as products), the above results show that the presence of HBr blocked the methane steam reformation reaction. This could also be understood as that the adsorption of HBr on Rh/SiO₂ blocked the adsorption of methane over the Rh/SiO₂ catalyst.

The above investigations show that, in the presence of HBr, CO was formed from the HBr initiated oxidation of methane, but not formed from the steam reformation of methane. The results of Fig. 1 show that CH₃Br was formed as the only product below 500 °C. Hence, there is reason to speculate that the HBr initiated oxidation reaction forms CH₃Br as the primary product in OBM reaction. The consecutive steam reformation and oxidation of CH₃Br might be the approaches to form CO in the OBM reaction.

3.7 The Steam Reformation of CH₃ Br Over Rh/SiO₂

In the steam reformation of CH₃Br, CH₃Br (7.0 mL/min), H₂O (6.0 mL/h, liquid), and N₂ (5.0 mL/min) were fed into Rh/SiO₂ catalyst bed. Products CO, CO₂, CH₄, H₂, and HBr were formed (Fig. 5). The reaction occurred at temperature higher than 500 °C. From 500 to 580 °C, products HBr, H₂, CH₄, and CO were formed. Above 580 °C, except CO, CH₄, H₂, and HBr, CO₂ was also detected. There was trace CH₂Br₂ detected by GC/MS at temperature higher than 600 °C. The CO selectivity decreased with the increase of the reaction temperature from 500 to 660 °C, and then increased with the increase of the reaction temperature from 660 to 680 °C. The selectivity of CH₄ increased when the reaction temperature increased from 500 to 580 °C and reached a maximum value of 50% at 580 °C. At reaction temperature higher than 580 °C, the selectivity of CH₄ decreased. The selectivity of CO₂ increased with the increase of the reaction temperature

F. Yang et al.

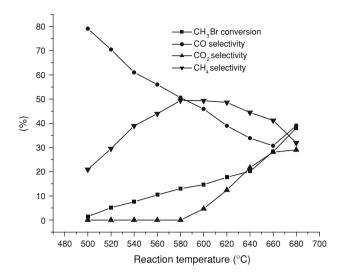
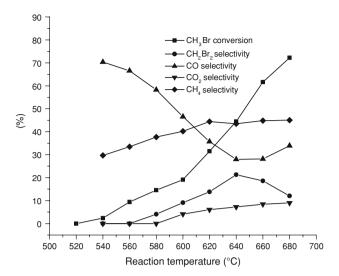


Fig. 5 The steam reformation of CH_3Br over Rh/SiO_2 (5.00 g). The reactant flows are 7.0 mL/min of CH_3Br , 6.0 mL/h of H_2O (liquid), and 5.0 mL/min of N_2

from 580 to 680 °C. In the absence of extra HBr feeding, reactions (1) to (3) could be predicted in the steam reformation of CH₃Br:


$$CH_3Br + H_2O \rightarrow CO + 2H_2 + HBr$$
 (1)

$$CH_3Br + H_2 \rightarrow CH_4 + HBr$$
 (2)

$$CO + H_2O \rightarrow CO_2 + H_2 \tag{3}$$

3.8 The Steam Reformation of CH₃Br in the Presence of HBr Over Rh/SiO₂

In a feeding of CH₃Br (7.0 mL/min), HBr/H₂O (6.0 mL/h, 40 wt% liquid), and N2 (5.0 mL/min), the steam reformation of CH₃Br occurred at relatively higher temperature (Fig. 6). The products H₂, CH₄, CO, and HBr were formed between the reaction temperatures 540 and 560 °C. At elevated reaction temperatures between 560 and 580 °C, except H₂, CH₄, CO, and HBr, CH₂Br₂ was also formed. Above 580 °C, except H₂, CH₄, CO, CH₂Br₂, and HBr, CO₂ was also produced as one of the products. Comparing the results of Fig. 6 with that of Fig. 5, in the presence of HBr, the reaction started at relatively higher temperature (540 °C). It could be found that, in the presence of HBr, the CH₃Br reformation conversion increased more rapidly with the increase of the reaction temperature than that of without feeding HBr (Fig. 5). The results of Figs. 5 and 6 indicate that the presence of HBr partially blocked the steam reformation of CH₃Br at reaction temperature below 560 °C and enhanced the steam reformation of CH₃Br at higher reaction temperature (higher than 560 °C). In both with and without HBr feeding cases, CO2 was formed at reaction temperature higher than 580 °C.

Fig. 6 The steam reformation of CH_3Br over Rh/SiO_2 (5.00 g). The reactant flows are 7.0 mL/min of CH_3Br , 6.0 mL/h of HBr/H_2O (40 wt% liquid), and 5.0 mL/min of N_2

In the steam reformation of CH₃Br, a big difference between HBr/H₂O and H₂O feeding cases is that, in the presence of HBr, CH₂Br₂ was formed as a major by-product from 560 to 680 °C and the selectivity of CH₂Br₂ was higher than that of CO₂. The formation of CH₂Br₂ indicates that there were CH₂Br* and Br* species over the surface of the catalyst at temperature higher than 560 °C. Hence, except the reactions (1), (2), and (3) shown previously, in the presence of HBr, the surface reactions (4)–(7) could also be predicted.

$$CH_3Br + * \rightarrow CH_2Br^* + H^* \tag{4}$$

$$HBr + * \rightarrow H^* + Br^* \tag{5}$$

$$CH_2Br^* + Br^* \to CH_2Br_2 \tag{6}$$

$$H^* + H^* \to H_2 \tag{7}$$

3.9 The Oxidation of CH₃Br in the Presence of HBr Over Rh/SiO₂

When CH₃Br (7.0 mL), O₂ (5.0 mL), HBr/H₂O (40 wt%, 6.0 mL/h liquid), and N₂ (5.0 mL) were fed into the Rh/SiO₂ catalyst bed, the reaction started at 460 °C (Fig. 7). CH₂Br₂, CO, CO₂, CH₄, and HBr were formed as the products. There was only trace amount of H₂ detected. In this case, CH₂Br₂ was the major product below 620 °C, while CO and CO₂ became the major products at higher reaction temperature (higher than 620 °C). The CH₃Br conversion in the oxidation reaction was much higher than that in the steam reformation reactions shown in Figs. 5 and 6. The selectivity of CH₂Br₂ increased from 58.7% to 82.6% with the increase of the reaction temperature from 460 to 540 °C and reached the maximum of 82.6% at 540 °C. Above 540 °C, the CH₂Br₂ selectivity decreased.

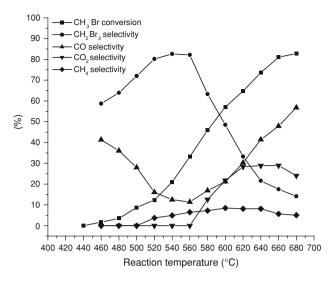


Fig. 7 The oxidation of CH_3Br over Rh/SiO_2 (5.00 g). The reactant flows are 7.0 mL/min of CH_3Br , 5.0 mL/min of O_2 , 6.0 mL/h of HBr/H_2O (40 wt% liquid), and 5.0 mL/min of O_2

The CO selectivity decreased (from 41.3% to 11.4%) with the increase of reaction temperature from 460 to 560 °C, and then increased from 11.4% to 56.8% with the increase of reaction temperature from 560 to 680 °C. The results show that CO could come from the steam reformation and the oxidation of CH₃Br. In the presence of O₂, the methane selectivity was much lower than that in the cases of without O₂ (Figs. 5 and 6). In the presence of O₂, CO₂ was formed at relatively lower temperature. In Fig. 7, CO₂ was detected at temperature higher than 560 °C, but in the cases of without O₂, CO₂ was detected at temperature higher than 580 °C as shown in Figs. 5 and 6.

The higher selectivity of CH₂Br₂ in the oxidation of CH₃Br indicates that the primary product is CH₂Br₂, which could be formed both in the gas phase and over the surface of catalyst. In the gas phase, HBr might react with O₂ to form bromine radicals, and then the bromine radicals reacted with CH₃Br to form CH₂Br radicals, which could react with Br radicals to obtain CH2Br2. Over the surface of the catalyst, the results in Fig. 6 show that there were CH₂Br* surface species, which could react with the Br* surface species or react with gas phase Br radicals to form CH₂Br₂. The presence of O₂ removed part of the adsorbed H* species over the surface of the catalyst and reduced the recombination possibility of H* and Br* species. Hence, the presence of O₂ also enhanced the combination of Br* with CH₂Br* species, which led to the increase of CH₂Br₂ selectivity. This viewpoint was also confirmed by the formation of CH₄ in the cases of with O₂ (Fig. 7) and without O_2 (Figs. 5 and 6). In the cases of without O_2 , much higher CH_4 selectivity was reached, but in the presence of O_2 , the selectivity of CH₄ was much lower (comparing the CH₄ selectivity in Fig. 7 with that in Figs. 5 and 6). The reason is that the hydrogenation of CH₃Br needs H* species. Removing H* by O₂ reduced the CH₄ formation rate.

In the steam reformation of CH₃Br, CH₄ was always formed as an hydrogenation product of CH₃Br. Hence, CO and CH₄ were always formed together as shown in Figs. 5 and 6. However, in the oxidation of CH₃Br (Fig. 7), CO was produced without forming CH₄ between 460 and 500 °C. Hence, below 500 °C, CO was produced from the oxidation of CH₃Br. From the comparision of CH₃Br conversions in the steam reformation (Fig. 6) and the oxidation (Fig. 7), most part of CO should be produced from the oxidation reaction below 560 °C, while above 560 °C, CO was produced from the oxidation and steam reformation of CH₃Br (Fig. 7).

Based on the investigations, the following reactions (8)–(25) could be predicted:

The possible surface reactions (8)–(18):

$$CH_3Br \rightarrow CH_3^* + CH_2^* + CH^* + C^* + H^* + Br^*$$
 (8)

$$CH_3^* + CH_2^* + CH^* + C^* + H_2O \rightarrow CO + CO_2 + H^*$$
 (9)

$$H^* + CH_3^* \rightarrow CH_4 \tag{10}$$

$$H^* + Br^* \to HBr \tag{11}$$

$$CH_3Br + * \rightarrow CH_2Br^* + H^* \tag{12}$$

$$HBr + * \rightarrow H^* + Br^* \tag{13}$$

$$CH_2Br^* + Br^* \rightarrow CH_2Br_2 \tag{14}$$

$$H^* + O_2 \rightarrow HO_2^* \tag{15}$$

$$H^* + HO_2^* \to 2HO^*$$
 (16)

$$H^* + HO^* \to H_2O^* \tag{17}$$

$$CH_3^* + CH_2^* + CH^* + C^* + O_2 \rightarrow CO + CO_2 + H_2O$$
 (18)

The possible gas phase reactions (19)–(25):

$$HBr + O_2 \rightarrow Br^{\bullet} + HO_2^{\bullet}$$
 (19)

$$CH_3Br + HO_2^{\bullet} \rightarrow^{\bullet} CH_2Br + H_2O_2$$
 (20)

$$H_2O_2 \rightarrow 2HO^{\bullet}$$
 (21)

$$CH_3Br + HO^{\bullet} \rightarrow^{\bullet} CH_2Br + H_2O$$
 (22)

$$CH_3Br + HO^{\bullet} \rightarrow^{\bullet} CH_2Br + H_2O$$
 (23)

$$CH_3Br + Br^{\bullet} \rightarrow CH_2Br + HBr$$
 (24)

$$CH_2Br^{\bullet} + Br^{\bullet} \rightarrow CH_2Br_2$$
 (25)

As shown in Fig. 4, in the reaction of CH₄ (20.0 mL/min), O_2 (5.0 mL/min), N_2 (5.0 mL/min), and HBr/H₂O (40 wt%, 6.0 mL/h) over quartz sand, there was no CO_2 formation. In the OBM reaction (Fig. 1), CO_2 was formed at temperature higher than 620 °C and the selectivity was lower than 0.4% (at 680 °C), which indicates that CO_2 might come from the oxidation of CO and the reaction

F. Yang et al.

could occur both on the surface of the catalyst and in the gas phase.

3.10 The Oxidation of CH₃Br in the Presence of HBr Over Quartz

When feeding CH₃Br (7.0 mL/min), O₂ (5.0 mL/min), N₂ (5.0 mL/min), and HBr/H₂O (40%, 6.0 mL/h) to a quartz bed, the results of Fig. 8 show that CH₄ and CO₂ were not formed over quartz sand between 450 and 680 °C. The gas phase oxidation of CH₃Br only formed CH₂Br₂ below 600 °C. CH₂Br₂ and CO were formed at relatively higher reaction temperature between 600 and 680 °C. Over Rh/ SiO₂, CH₄ was formed as one of the products in the oxidation of CH₃Br (Fig. 7). However, there was no CH₄ formation in the oxidation of CH₃Br over quartz sand (Fig. 8). The results indicate that Rh/SiO₂ is necessary for the hydrogenation reaction of CH₃Br to form CH₄, which also confirmed that CH₄ was formed on the surface of Rh/ SiO₂. The investigations of CH₃Br oxidation over Rh/SiO₂ and quartz indicate that all of the CO₂ was formed from the oxidation and steam reformation of CO over the surface of Rh/SiO₂ catalyst. Hence, below 600 °C, we have the gas phase reactions (26) to (31) over quartz sand.

$$HBr + O_2 \rightarrow HO_2^{\bullet} + Br^{\bullet} \tag{26}$$

$$HBr + HO_2^{\bullet} \to H_2O_2 + Br^{\bullet} \tag{27}$$

$$H_2O_2 \rightarrow 2HO^{\bullet}$$
 (28)

$$HBr + 2HO^{\bullet} \rightarrow H_2O + Br^{\bullet}$$
 (29)

$$CH_2Br + Br^{\bullet} \rightarrow HBr + CH_2Br^{\bullet}$$
 (30)

$$CH_2Br^{\bullet} + Br^{\bullet} \rightarrow CH_2Br_2$$
 (31)

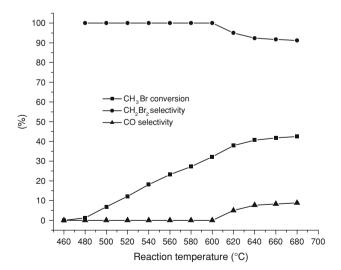


Fig. 8 CH₃Br oxidation over quartz sand at reactant flows: CH₃Br 7.0 mL/min, O_2 5.0 mL/min, O_2 5.0 mL/min, and HBr/H₂O(40 wt%) 6.0 mL/h

4 Conclusion

In conclusion, the OBM reaction occurred both in the gas phase and over the surface of the catalyst Rh/SiO2, but the surface reactions contributed the major part in the formation of CH₃Br and CH₂Br₂. The possible pathway is that HBr reacted with oxygen to form bromine radicals and adsorbed bromine species. The bromine radicals and adsorbed bromine species might react with methane to form CH₃Br. CH₃Br could react with Br[•] radicals to form CH₂Br₂ in the gas phase. CH₃Br could also adsorb onto the Rh/SiO₂ surface to form CH₂Br* species, which could react with Br radicals and/or Br species to form CH₂Br₂. The major part of CO was formed from the steam reformation and the oxidation of CH₃Br. The gas phase oxidation of CH₃Br only produced CH₂Br₂ and CO. CO₂ was formed in the oxidation of CO over the surface of the catalyst at temperature higher than 560 °C. The presence of HBr inhibited the deep oxidation and the steam reformation of methane.

Acknowledgments The project was supported by NSFC project 20673101, project 2006BAE02B05 (Chinese Ministry of Science and Technology), "Jian-Feng Professor" foundation of Zhejiang Normal University (KYJ01Y05002) and NSFC project 20673102.

References

- Zhou XP, Yilmaz A, Yilmaz GA, Lorkovic IM, Laverman LE, Wiss M, Sherman JH, McFarland EW, Stucky GD, Ford PC (2003) Chem Commun 18:2294
- Lorkovica IM, Yilmaza A, Yilmaza GA, Zhou XP, Laverman LE, Sun S, Schaefer DJ, Weiss M, Noy ML, Cutler CI, Sherman JH, McFarland EW, Stucky GD, Ford PC (2004) Catal Today 98:317
- Zhou XP, Lorkovic IM, Sherman JH (2002) US Patent 6,486,368, to GRT Inc
- Zhou XP, Lorkovic IM, Stucky GD, Ford PC, Sherman JH, Grosso P (2002) US Patent 6,472,572, to GRT Inc
- Zhou XP, Stucky GD, Sherman JH (2002) US Patent 6,465,696, to GRT Inc
- Zhou XP, Lorkovic IM, Stucky GD, Ford PC, Sherman JH, Grosso P (2002) US 6,462,243, to GRT Inc
- Zhou XP, Stucky GD, Sherman JH (2002) US 6,403,840, to GRT Inc
- Liu Z, Huang L, Li WS, Yang F, Au CT, Zhou XP (2007) J Mol Catal A: Chem 273:14
- 9. Xu HF, Wang KX, Li WS, Zhou XP (2005) Catal Lett 100:53
- Wang KX, Xu HF, Li WS, Au CT, Zhou XP (2006) Appl Catal A: Gen 304:168
- 11. Wang KX, Xu HF, Li WS, Zhou XP (2005) J Mol Catal A: Chem 225:65
- 12. Osterwalder N, Stark WJ (2007) Chem Phys Chem 8:297
- Schweizer AE, Jones ME, Hickman DA (2002) US Patent 6,452,058, to Dow Global Technologies Inc