Methane oxidative coupling over Na₂WO₄/SiO₂

Q.J. Yan, Y. Wang, Y.S. Jin * and Y. Chen

Department of Chemistry, * Material Analysis Center, Nanjing University, Nanjing, China

Received 10 July 1991; accepted 15 January 1992

Methane oxidative coupling (MOC) was studied over Na₂WO₄/SiO₂. The effect of Na₂WO₄ loading and reaction conditions on the catalytic behaviour was investigated. XRD, SEM, LRS and XPS have been used to study the catalyst morphology, Na₂WO₄ dispersity and surface oxygen species. These results were correlated with the catalytic activity and selectivity.

Keywords: Oxidative coupling of methane; metal oxides; XRD; XPS; SEM; LRS; Na₂WO₄/SiO₂ catalyst

1. Introduction

At present, there is great interest in improving natural gas utilization. The oxidative coupling of methane has received considerable attention. A large number of metal oxides including reducible metal oxides, alkali metal ions promoted alkaline earth oxides and rare earth oxides have been tested and considerable progress has been made in elucidating the reaction mechanism [1–5]. Most researchers agree that the intermediate of oxidative dehydrodimerization of methane on oxide catalysts is CH_3^+ radical and the formation of CO_x and C_2H_4 both take place heterogeneously and/or homogeneously [6]. Several authors have suggested that the catalytic activity and selectivity are related to the acid-base properties of the catalyst [7,8].

The purpose of this paper is to report a new type catalyst Na₂WO₄/SiO₂ which exhibits pretty good activity and selectivity for MOC. The catalytic performance will correlate with the catalyst morphology and surface state.

2. Experimental

Catalysts were prepared by the impregnation method. A specific amount of SiO₂ was added to aqueous solution of Na₂WO₄, the resulting slurry was stirred over a water bath at 333 K until dry and subsequently dried at 393 K for 12 hrs,

calcined in air at 1023 K for 5 hrs. The catalysts were pressed, crushed and sieved to a particle size of 20–40 mesh for use. The catalytic performance was carried out in a quartz fix-bed reactor with 40 mm I.D. Natural gas (> 95% $\rm CH_4$) and air (99%) were used as feed gas and purified to remove sulfur and water before use. Pure $\rm CH_4$ (99.9%) was also used instead of natural gas for comparison and gave a little decrease in $\rm C_2$ yield. The reactants and products were analyzed by on line G.C. with 3 m molecular sieve 13X column for the analysis of $\rm N_2$, $\rm O_2$, $\rm CO$ and $\rm CH_4$ and 3 m Porapak Q column for the analysis of $\rm CH_4$, $\rm CO$, $\rm CO_2$, $\rm C_2$ and $\rm C_3$ hydrocarbons. The main products were $\rm C_2$ hydrocarbons, $\rm CO_2$, $\rm CO$, $\rm H_2O$, $\rm H_2$ and small amounts of $\rm C_3H_8$ and $\rm C_3H_6$. Water was removed from the reaction products by a $\rm C_2H_5OH$ -L.N. trap before analysis. $\rm C_2$ selectivity (%) is defined as

$$\frac{2X[(\text{moles } C_2H_4 + \text{moles } C_2H_6) \text{ in product}]}{\text{Total moles C in product}} \cdot 100$$

C, yield is defined as CH₄ conversion times selectivity.

A D/MAX-RA type X-ray diffractometer was used with Cu K α radiation ($\lambda=1.542$ Å) and a graphite filter for phase analysis. Raman spectra were measured using a Spex Ramanlog Model 1403 spectrometer with argon ion laser tuned to the 5145 Å line for excitation. The samples were mounted on a spinning sample holder. XPS experiments were carried out in a V.G. ESCALAB MKII system with a hemispherical analyzer operated at 20 eV. A Mg K α X-ray source was used. C_{1s} (B.E. = 284.6 eV) was used as an internal standard to determine the binding energies of the other species. The catalysts morphology was characterized by a Hitachi X 560 type scanning electron microanalyzer.

3. Results and discussion

Table 1 shows the effect of Na₂WO₄ loading on the catalytic behaviour. The support SiO₂ itself shows fairly good activity for CH₄ conversion but poor C₂

Table 1 The effect of Na₂WO₄ loading on the catalytic properties of Na₂WO₄/SiO₂ W = 0.3 g, T = 1073 K, F = 30 ml/min, CH₄/air = 1/2

Na ₂ WO ₄	S_2A . (m^2/g)	Conversion (%)		Selectivity (%)				Yield (%)	
loading (%)		$\overline{\mathrm{O}_2}$	CH ₄	$\overline{C_2H_6}$	C_2H_4	CO	CO_2	$\overline{C_2}$	C_2H_4
0	242.8	95.3	27.3	2.7	7.3	77.7	12.3	2.7	2.0
2.5	20.6	77.8	26.6	10.3	21.6	46.2	22.0	8.5	5.7
5.0	4.3	94.7	33.2	15.1	37.7	21.0	26.2	17.5	12.5
10.0	2.3	85.1	32.7	13.8	43.4	22.8	20.0	18.7	14.2
20.0	2.0	69.0	26.9	12.2	41.8	32.1	13.9	14.5	11.2
40.0	2.0	46.8	18.4	16.1	36.4	35.1	12.4	9.7	6.7

Space velocity	CH ₄ /air	Conversion (%)		Selectivity (%)		Yield (%)	
(ml/g.hr)		$\overline{\mathrm{O}_2}$	CH ₄	$\overline{C_2H_6}$	C_2H_4	$\overline{\mathrm{C}_2}$	C_2H_4
3000	1/2	95.1	37.8	14.6	43.7	22.0	16.5
6000	1/2	95.3	38.9	16.2	43.5	23.2	16.9
9000	1/2	83.6	37.0	19.1	43.3	23.1	16.0
3500	1/2.5	95.2	44.1	12.7	41.7	25.1	18.3
7000	1/2.5	91.9	44.5	14.6	41.7	25.1	18.6
3000	1/5	95.1	58.0	7.9	34.1	24.4	19.8
3000	1/1	95.2	23.1	22.4	47.6	16.2	11.0
3000	2/1	94.8	13.4	31.0	50.0	10.9	6.7

Table 2 The effect of reaction conditions on catalytic activity and selectivity over 10 wt% Na_2WO_4/SiO_2

T = 1093 K.

selectivity. This characteristic may be partly related to the acid property and high surface area of SiO_2 . Loading of Na_2WO_4 on the support causes significant increase of C_2 selectivity and a rather small increase of CH_4 conversion and also a decrease in the BET surface area. It seems that the role of Na_2WO_4 may simply be to reduce the specific surface area of the catalysts and to neutralize the acid sites on SiO_2 . Since Na_2WO_4 is a base such scavenging of the residual acid sites on the SiO_2 surface is not novel. Little differences both in C_2 selectivities and the surface area of the catalysts were observed beyond 5% weight loading. This phenomen will be discussed later. The sample with 10 wt% loading gives the highest C_2 selectivity and yield.

Table 2 shows the effect of space velocity and CH_4/air ratio on the catalytic activity measured at 1093 K over the 10 wt% Na_2WO_4/SiO_2 sample. The selectivity of C_2H_6 increases with the increase of the space velocity that is with the decrease of the residence time of the feed gas on the catalyst. However, too high a space velocity will significantly decrease the conversion of O_2 . Since the decrease of the CH_4/air ratio results in the increase of O_2 partial pressure and the partial pressure of O_2 as well, the methane conversion dramatically increases at the expense of the O_2 selectivity. When O_2 are obtained. With a O_2 can decrease of O_2 and O_2 and O_2 and O_3 are selectively, and the conversion of O_3 and O_4 decreases to 13.4%.

Tables 1 and 2 provide some insight on the C_2 and CO_x (x=1,2) formation mechanism. Since C_2H_6 selectivity decreases and C_2H_4 selectivity and CH_4 conversion remain virtually constant with the decrease of space velocity, we may suggest that further oxidation of C_2H_6 to CO_x does occur. As shown in table 1, a lower surface area gives a higher C_2 selectivity, it seems that the CO_x formation takes place mainly on the catalyst surface. In addition, the fact that the C_2H_4/C_2H_6 ratio varies with the Na_2WO_4 loading and increases with the

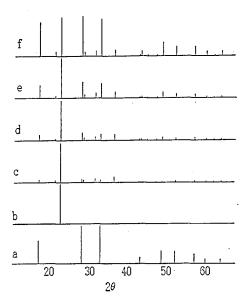
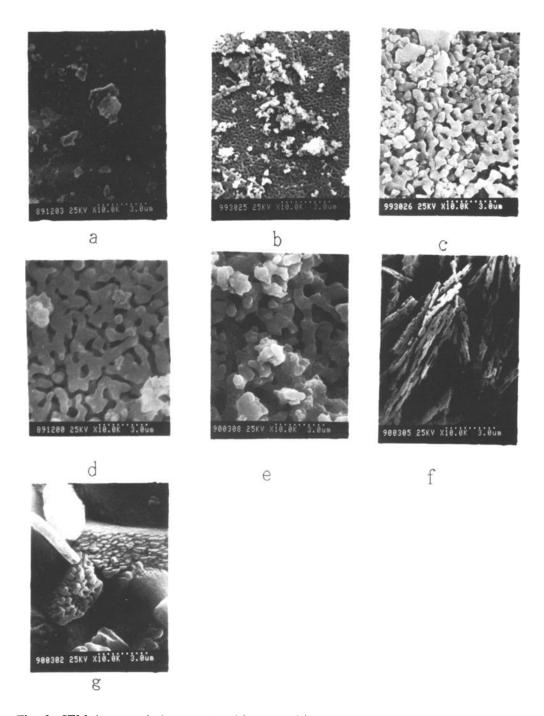



Fig. 1. XRD patterns of Na₂WO₄/SiO₂. (a). Na₂WO₄, (b). 2.5 wt% Na₂WO₄/SiO₂, (c). 5 wt% Na₂WO₄/SiO₂, (d). 10 wt% Na₂WO₄/SiO₂, (e). 25 wt% Na₂WO₄/SiO₂, (f). 40 wt% Na₂WO₄/SiO₂.

oxygen concentration in the feed gas reveals that the conversion of ethane to ethylene also occurs either in the gas phase or on the catalyst surface [9].

The effect of reaction temperature on $\mathrm{CH_4}$ conversion and $\mathrm{C_2}$ selectivity has also been examined over the 10 wt% $\mathrm{Na_2WO_4/SiO_2}$ sample. Methane and oxygen conversion increase with increasing temperature up to 1073 K, no significant change is observed for $\mathrm{C_2}$ selectivity. Beyond 1093 K, both $\mathrm{C_2}$ selectivity and $\mathrm{CH_4}$ conversion begin to decrease.

The bulk structure and the morphology of the catalysts were examined via XRD and SEM methods. XRD results show that in supported Na₂WO₄/SiO₂, the amorphous SiO₂ is transformed to α-cristobalite below 1023 K, its pore structure disappears and results in the dramatic decrease of the surface area (table 1). From fig. 1 we can see that the 101 face of α-cristobalite shows up in the 2.5 wt% Na₂WO₄/SiO₂ sample, but no Na₂WO₄ crystalline phase is detected by XRD. As the loading increases to 5 wt%, all other characteristic peaks of α-cristobalite appear and cubic Na₂WO₄ phase is also detected. Fig. 2 shows the SEM results. Similar morphology is observed for samples with 5, 10, 20 wt% Na₂WO₄ loading. The coral-like structure should be related to the interaction between Na₂WO₄ and SiO₂. When Na₂WO₄ content reaches 40 wt%, the sample's morphology is similar to that of crystalline Na₂WO₄. LRS results are given in table 3. The Raman spectra of Na₂WO₄ exhibit five characteristic frequencies at 930 cm⁻¹ (symmetric W-O stretch), 814 cm⁻¹ (antisymmetric W-O stretch), 376 and 312 cm⁻¹ (W-O bending vibration) and 94

Table 3				
Raman	shifts	of	the	samples

Samples	Raman shift (cm ⁻¹)		
Na ₂ WO ₄	94, 312, 376, 814, 930		
2.5 wt% Na ₂ WO ₄ /SiO ₂	458		
5 wt% Na ₂ WO ₄ /SiO ₂	226, 314, 418, 930, 958		
$10 \text{ wt}\% \text{ Na}_2 \text{WO}_4 / \text{SiO}_2$	114, 232, 314, 418, 812, 930, 958		
$40 \text{ wt}\% \text{ Na}_2 \text{WO}_4 / \text{SiO}_2$	116, 234, 314, 378, 420, 814, 930, 960		

cm⁻¹ (lattice vibration), respectively. No characteristic band of Na₂WO₄ is detected for the 2.5 wt% sample. As the loading is over 5 wt%, the major vibration of Na₂WO₄ is observed; but the lattice vibration band at 94 cm⁻¹ can only be seen in the 40 wt% sample. When the loading is over 5 wt%, three additional bands are observed at 116, 226–234 and 958–960 cm⁻¹. The 226–234 cm⁻¹ peak and 958–960 cm⁻¹ peak could be assigned to W-O-W deformation and W-O symmetric stretching, respectively. It is believed that these bands are associated with two-dimensional surface tungstate species [10]. These results suggest that small Na₂WO₄ crystallites coexist with the highly dispersed and amorphous Na₂WO₄ on the surface of α -cristobalite at the loading range of 5%–20%. Table 1 indicates that the sample with 40 wt% loading gives only 18% CH₄ conversion, which is much lower than that over SiO₂ itself. We may conclude that the crystal Na₂WO₄ phase is not favourable to the CH₄ conversion, but the highly dispersed Na₂WO₄ and small Na₂WO₄ crystallites on the surface of α -cristobalite are benefit to the CH₄ conversion and C₂ formation.

The surface Na/Si atomic ratios determined by XPS are given in table 4. For all four catalysts, the Na/Si ratio at the surface is greater than that in the bulk, with the ratio of 0.49 being the greatest for the 10 wt% sample. This value is almost ten times greater than that in the bulk. It confirms that the surface of these catalysts are covered with highly dispersed Na₂WO₄. As an example of XPS spectra in the O_{1s} region, the O_{1s} spectrum of 10 wt% Na₂WO₄/SiO₂ is shown in fig. 3. Three peaks may be resolved, at binding energies of 532.9, 531.9 and 530.1 eV. Since the XPS spectra of SiO₂ and Na₂WO₄ show the O_{1s} peaks at 532.9 and 530.1 eV, respectively, we suppose that the O_{1s} peak at 531.9 eV

Table 4 Na/Si atomic ratio determined by XPS and C.A.

Na ₂ WO ₄ loading (wt%)	Na/Si in bulk (C.A.)	Na/Si at surface (XPS)		
2.5	0.010	0.17		
5	0.022	0.32		
10	0.044	0.49		
20	0.100	0.36		

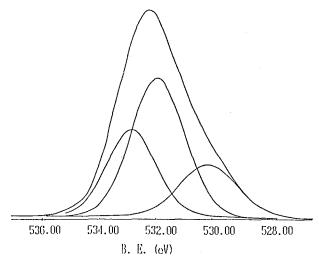


Fig. 3. O_{1s} spectrum of 10 wt% Na₂WO₄/SiO₂.

resulted from the interaction between Na₂WO₄ and SiO₂ and tentatively assigned to some kind of surface oxygen species.

It is generally accepted that methane activation is via abstraction of a hydrogen atom from methane by the catalyst. The O^- species is believed to be one of the active centers for abstraction of the hydrogen atom [1]. J.H. Lunsford and coworkers [11] suggested that the Li⁺O⁻ species are responsible for the generation of CH₃ radicals on Li/MgO. Otsuka et al. [12] suggested that O_2^{2-} could be the oxygen species responsible for methane activation over rare earth metal oxides and alkali metal promoted oxides. Osada et al. [13] suppose that O_2^- is one of the active sites on the Y_2O_3 -CaO catalyst. It is well known that Na_2WO_4 is a complex oxide with a modified spinel structure. Our experimental results confirm that the transformation of SiO_2 to α -cristobalite is enhanced by Na_2WO_4 . For the 10 wt% Na_2WO_4 /SiO₂ catalyst, the high dispersion of Na_2WO_4 , the enrichment of Na atoms and the formation of surface oxygen species with binding energy of 531.9 eV on the surface were observed. We suppose that those are responsible for the good catalytic property of the catalyst.

4. Conclusion

The Na_2WO_4/SiO_2 catalyst prepared by the impregnation method is active and selective for the oxidative coupling of methane. C_2 selectivity and yield of the catalysts at 1073 K increase remarkably by increasing the loading of Na_2WO_4 and reach a maximum at 10 wt%. The highest C_2 yield obtained at 1093 K with a CH_4/air ratio of 1/2.5 and a space velocity of 7000 ml/g.hr is 25.1%.

Highly dispersed and small crystallites of the Na_2WO_4 coexist on the support surface at the loading range of 5–20%. The most active sample has a coral like morphology, the highest Na/Si ratio on the surface and a surface oxygen species with binding energy of 531.9 eV.

Acknowledgement

The support of the National Natural Science Foundation of China is gratefully acknowledged.

References

- [1] J.S. Lee and S.T. Oyama, Catal. Rev.-Sci. Eng. 30 (1980) 249.
- [2] G.E. Keller and M.M. Bhasin, J. Catal. 73 (1982) 9.
- [3] K. Otsuka, S. Yokoyama and A. Morikawa, Chem. Lett. (1985) 319.
- [4] C.H. Lin, J.X. Whang and J.H. Lunsford, J. Catal. 111 (1988) 302.
- [5] Y. Amenomiya, V.I. Birss, M. Goledzinowski, J. Galuszka and A.R. Sanger, Catal. Rev.-Eng. 32 (1990) 163.
- [6] M.Yu Sinev, V.N. Korchak and O.V. Kryla, Kinet. Catal. 28 (1988) 1188.
- [7] S.K. Agarwal, R.A. Migone and G. Marcelin, Appl. Catal. 53 (1989) 71.
- [8] I.T. Ali Emesh and Y. Amenomiya, J. Phys. Chem. 90 (1986) 4785.
- [9] G. Wendt, C.D. Meinecke and W. Schmitz, Appl. Catal. 45 (1988) 209.
- [10] S.S. Chen, I.E. Wachs, L.L. Murrell and N.C. Dispenziere, J. Catal. 92 (1985) 1.
- [11] J.X. Wang and J.H. Lunsford, J. Phys. Chem. 90 (1986) 5883.
- [12] K. Otsuka and K. Jinno, Inorg. Chim. Acta. 121 (1986) 237.
- [13] Y. Osada, S. Koike, T. Fukushima, S. Ogasawara, T. Shikada and T. Ikariya, Appl. Catal. 59 (1990) 59.
- [14] A.F. Wells, Structure Inorganic Chemistry (Clarendon Press, Oxford, 1984).