# Low-temperature steam reforming of *n*-butane over Rh and Ru catalysts supported on ZrO<sub>2</sub>

Akira Igarashi \*, Takeshi Ohtaka and Shinji Motoki

Department of Chemical Engineering, Faculty of Engineering, Kogakuin University, Tokyo 192, Japan

Received 5 November 1991; accepted 9 January 1992

In the 500  $^{\circ}$  C steam reforming reaction of *n*-butane, Rh and Ru catalysts supported on ZrO<sub>2</sub> exhibited high catalytic activities for hydrogen production at a low steam-to-carbon ratio with little activity decline.

Keywords: Steam reforming; low-temperature; rhodium catalyst; ruthenium catalyst; zirconia support

## 1. Introduction

Steam reforming reactions of hydrocarbons are widely used to produce hydrogen and syngas. Since steam reforming is generally a strongly endothermic reaction [1], current reforming processes for hydrogen production use at high temperature nickel catalysts (800–900°C) which supply heat by fuel combustion. In the near future, it is expected that hydrogen demands will increase due to the development of new fuel cell systems and the processing of heavy and hydro-deficient feedstocks. To obtain higher thermal efficiencies, a hydrogen producing catalyst must have sufficient catalytic activity at the lowest temperature, while also performing steam reforming at a low steam-to-carbon ratio without carbon deposition.

The present paper reports on Rh and Ru catalysts supported on  $ZrO_2$  which were used to obtain outstanding activities during low-temperature steam reforming reactions of n-butane.

# 2. Experimental

The  $ZrO_2$  support was obtained by calcination of hydroxide in a  $N_2$  stream for 1 h at 500°C, with rhodium chloride trihydrate being impregnated onto  $ZrO_2$  when Rh was used as the catalyst's metallic component. The dried material was

| Catalyst              | Conversion of $n$ -butane (%) | Gas product composition (%) |                 |                 |       |
|-----------------------|-------------------------------|-----------------------------|-----------------|-----------------|-------|
|                       |                               | CO                          | CH <sub>4</sub> | CO <sub>2</sub> | $H_2$ |
| Rh/ZrO <sub>2</sub>   | 82.6                          | 2.9                         | 14.9            | 20.3            | 61.9  |
| $Rh/Al_2O_3$          | 31.3                          | 14.0                        | 6.4             | 10.6            | 69.0  |
| Rh/SiO <sub>2</sub> b | 4.1                           | 5.9                         | ~ 0             | 15.5            | 78.5  |
| C11-2S-03 °           | 90.4                          | 2.3                         | 20.7            | 19.9            | 57.1  |

Table 1
Catalytic activities and gas product compositions of Rh/commercial catalysts <sup>a</sup>

again calcined in a  $N_2$  stream for 1 h at  $500\,^{\circ}$ C, then pelletized and crushed (0.5-1.0 mm) in dia.). In addition, other catalysts were similarly prepared by the above impregnation method, i.e.,  $Rh/Al_2O_3$  ( $\gamma$ - $Al_2O_3$ , JRC-ALO-4),  $Rh/SiO_2$  (silica gel, Davison "ID"), noble metal catalysts supported on  $ZrO_2$  (Pd, Pt, Ir, and Ru: all obtained from chloride sources), and  $Ni/ZrO_2$  whose Ni source was nitrate. The metallic component of noble metal catalysts was 0.5 wt% and that of  $Ni/ZrO_2$  was 10 wt%. A commercial catalyst for steam reforming of low molecular weight hydrocarbons (CCI: C11-2S-03, 16 wt%, Ni/CaO- $Al_2O_3$ ) was used to compare respective activities.

Steam reforming of *n*-butane was performed at atmospheric pressure using a conventional microreactor with a fixed bed catalyst. Reaction conditions were as follows: temperature, 500°C and 450°C; total feed space velocity (SV), 40,000 h<sup>-1</sup>; H<sub>2</sub>O/C ratio (mol/atom), 3. All catalysts were reduced in a H<sub>2</sub> stream for 1 h at 500°C.

#### 3. Results and discussion

Table 1 shows the reforming activities (i.e., the %-conversion of n-butane per volume of catalyst) and gas product compositions of the Rh and commercial catalysts at 500°C. Only the commercial catalyst's initial activity was determined (1 h) because carbon deposition caused a blockage in the reactor at the reaction time of 1.5 h, thus the catalyst could not be used at the present study's low steam-to carbon reaction conditions, although its initial activity was quite high. It should be noted that the Rh/ZrO<sub>2</sub> catalyst had higher catalytic activity than the Rh/Al<sub>2</sub>O<sub>3</sub> catalyst, whereas, in spite of the low space velocity ( $SV = 10,000 \, h^{-1}$ ), the activity was very low for the Rh/SiO<sub>2</sub> catalyst. Significant variations in the gas product compositions for the Rh/ZrO<sub>2</sub> and Rh/Al<sub>2</sub>O<sub>3</sub> should also be noticed. Fig. 1 shows the Rh/ZrO<sub>2</sub> and Rh/Al<sub>2</sub>O<sub>3</sub> catalytic activities with respect to reaction time (500°C), where the Rh/ZrO<sub>2</sub> catalyst appears to have a

<sup>&</sup>lt;sup>a</sup> Temperature: 500°C; SV: 40,000 h<sup>-1</sup>; H<sub>2</sub>O/C ratio: 3; and reaction time: 5 h.

b SV: 10.000 h<sup>-1</sup>.

<sup>&</sup>lt;sup>c</sup> Reaction time: 1 h. Carbon deposition caused a blockage in the reactor at greater than 1.5 h.

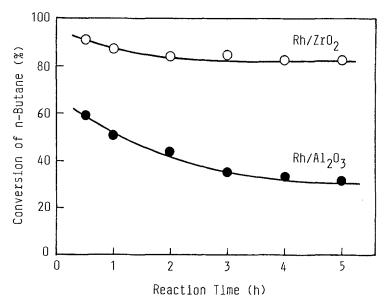



Fig. 1. Catalytic activities of the Rh/ZrO<sub>2</sub> and Rh/Al<sub>2</sub>O<sub>3</sub> catalysts. Temperature: 500°C; SV: 40,000 h<sup>-1</sup>; and H<sub>2</sub>O/C ratio: 3.

lower deactivation rate as compared to the  $Rh/Al_2O_3$  catalyst. The effect of the  $H_2O/C$  ratio on the  $Rh/ZrO_2$  catalytic activity is shown in fig. 2, and it is clear that  $Rh/ZrO_2$  has high activity even at a low  $H_2O/C$  ratio. The theoretical gas

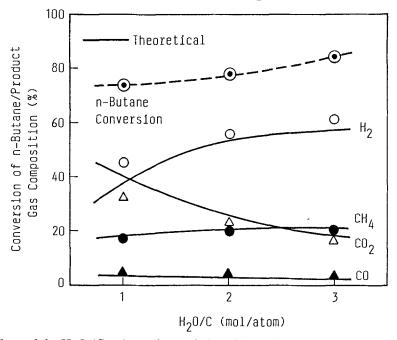



Fig. 2. Effects of the  $H_2O/C$  ratio on the catalytic activity and gas product compositions (o:  $H_2$ ;  $\bullet$ :  $CO_2$ ;  $\triangle$ :  $CH_4$ ;  $\blacktriangle$ : CO) of the Rh/ZrO<sub>2</sub> catalyst. Temperature: 500°C; and SV: 40,000 h<sup>-1</sup>.

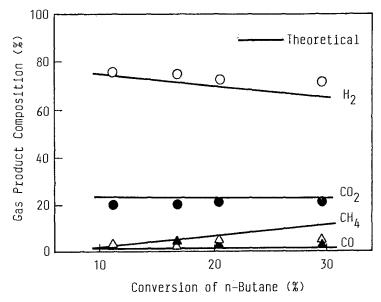



Fig. 3. Comparison of experimental and theoretical gas product compositions over a  $\rm Rh/ZrO_2$  catalyst. The symbols are the same as for fig. 2. Temperature: 450°C;  $\rm SV$ : 40,000 h<sup>-1</sup>, and  $\rm H_2O/C$  ratio: 3.

product composition was obtained using a kinetic equilibrium calculation [2] of the following reactions:

$$n-C_4H_{10} + 4H_2O \rightarrow 4CO + 9H_2$$
 (1)

$$CO + 3 H_2 \rightleftharpoons CH_4 + H_2O \tag{2}$$

$$CO + H_2O \rightleftharpoons CO_2 + H_2. \tag{3}$$

The good agreement shown between the calculated and experimental values indicates that the reactions over the Rh/ZrO<sub>2</sub> catalyst are close to those obtained at a 500°C thermodynamic equilibrium state. Figs. 3 and 4 compare the experimental and theoretical gas product compositions over the Rh/ZrO<sub>2</sub> and Rh/Al<sub>2</sub>O<sub>3</sub> catalysts at 450°C, respectively. The relationship between the %-conversion of *n*-butane and the gas product compositions was obtained by changing the space velocity. As shown in fig. 3, the experimental and theoretical values were initially approximately equal, thereby indicating that kinetic equilibrium is established and that oxidation of CO, i.e., the water-gas shift reaction (2), occurs markedly fast over the Rh/ZrO<sub>2</sub> catalyst. By contrast, fig. 4 shows that the experimental CO<sub>2</sub> content for Rh/Al<sub>2</sub>O<sub>3</sub> was much less than the theoretical one, being in good agreement with Kikuchi et al. [3] for the steam reforming of *n*-butane over Rh/Al<sub>2</sub>O<sub>3</sub>. These results indicate slow CO oxidation over the Rh/Al<sub>2</sub>O<sub>3</sub> catalyst. The catalytic activities and gas product compositions of Rh, Ru, and Ni catalysts supported on ZrO<sub>2</sub> (450°C) are also shown in table 2. Pd, Ir, and Pt catalysts supported on ZrO2 had little catalytic activity. It should be

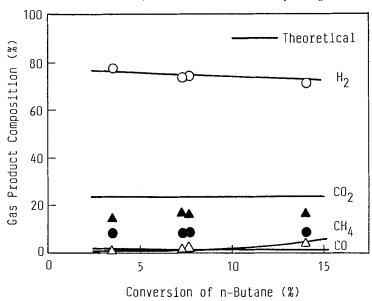



Fig. 4. Comparison of experimental and theoretical gas product compositions over a Rh/Al<sub>2</sub>O<sub>3</sub> catalyst. Symbols are the same as fig. 2. Temperature:  $450^{\circ}\text{C}$ ; SV:  $40,000 \text{ h}^{-1}$ , and  $H_2\text{O/C}$  ratio:

noted that the  $Ru/ZrO_2$  and  $Rh/ZrO_2$  catalysts have nearly equal high activities, an important result for industrial catalyst applications since Rh is more expensive than Ru. Although the  $Ni/ZrO_2$  catalyst showed very high activity, carbon deposition caused a blockage in the reactor at reaction times greater than 4 h. These high Rh and Ru catalytic activities correlate with both Dowden's prediction [4] and the experimental results of steam reforming of methane and ethane when respectively using  $SiO_2$  [5] and  $Al_2O_3$  [6] as supports. It is also interesting to note that the  $Ru/ZrO_2$  catalyst's  $CH_4$  content is at the equilibrium value as compared with the  $Rh/ZrO_2$  catalyst's  $CH_4$  content, thus indicating that the reaction proceeds very smoothly over the  $Ru/ZrO_2$  catalyst.

Based on these results, it is believed that ZrO<sub>2</sub> supports have superior properties for low-temperature steam reforming over Rh and Ru catalysts.

Table 2
Catalytic activities and gas product compositions of Rh, Ru, and Ni catalysts <sup>a</sup>

| Catalyst                                     | Conversion of <i>n</i> -butane (%) | Gas product composition (%) |                 |                 |       |  |
|----------------------------------------------|------------------------------------|-----------------------------|-----------------|-----------------|-------|--|
|                                              |                                    | CO                          | CH <sub>4</sub> | CO <sub>2</sub> | $H_2$ |  |
| Rh/ZrO <sub>2</sub>                          | 50.6                               | 2.1                         | 12.3            | 19.2            | 66.4  |  |
| Ru/ZrO <sub>2</sub><br>Ni/ZrO <sub>2</sub> b | 53.8                               | 0.9                         | 23.8            | 20.0            | 55.3  |  |
| Ni/ZrO <sub>2</sub> b                        | 78.7                               | 2.1                         | 25.1            | 19.0            | 53.8  |  |

<sup>&</sup>lt;sup>a</sup> Temperature: 450°C; SV: 40,000 h<sup>-1</sup>; H<sub>2</sub>O/C ratio: 3; and reaction time: 5 h.

<sup>&</sup>lt;sup>b</sup> Carbon deposition caused a blockage in the reactor at greater than 4 h.

## References

- [1] J.R. Rostrup-Nielsen, in: *Catalysis, Science and Technology*, eds. J.R. Anderson and M. Boudart (Springer-Verlag, Berlin, 1984) Ch. 1.
- [2] T.R. Phillips, T.A. Yarwood, J. Mulhall and G.E. Turner, J. Catal. 17 (1970) 28.
- [3] E. Kikuchi, Y. Yamazaki and Y. Morita, Bull. Japan Petrol. Inst. 17 (1975) 3.
- [4] D.A. Dowden, C.R. Schnel and G.T. Walker, *IVth Int. Congr. Catal.*, Moscow, 1968, Preprint No. 62.
- [5] E. Kikuchi, S. Tanaka, Y. Yamazaki and Y. Morita, Bull. Japan Inst. 16 (1974) 95.
- [6] J.R. Rostrup-Nielsen, J. Catal. 31 (1973) 173.