Low temperature oxidative conversion of methane to synthesis gas over Co/rare earth oxide catalysts

V.R. Choudhary *, A.M. Rajput and V.H. Rane

Chemical Engineering Division, National Chemical Laboratory, Pune-411 008, India

Received 9 July 1992; accepted 11 September 1992

CoO-rare earth oxide catalysts (particularly CoO-Yb₂O₃) show high activity and selectivity in the oxidative conversion of methane to CO and H₂ with very high productivity at low temperatures ($\leq 700^{\circ}$ C as low as 300°C).

Keywords: Methane; carbon monoxide; hydrogen; synthesis gas; Co/rare earth oxide catalysts; oxidation of methane to CO and H₂

Synthesis gas (i.e. a mixture of H₂ and CO, used as a feed stock for ammonia, methanol and Fischer-Tropsch synthesis processes) is produced from methane mostly by its steam reforming [1,2], which is highly energy intensive and also suffers from limitations like poor selectivity for CO and high H₂/CO product ratio, unsuitable for methanol and Fischer-Tropsch synthesis. It can also be produced by the high pressure non-catalytic partial oxidation of methane [1,2], but although this process is mildly exothermic and also free from the above limitations, it operates at very high temperature (≥ 1300°C). Because of the energy crises and need for the conversion of methane/natural gas into easily transportable and/or value added products (viz. methanol, liquid hydrocarbon fuels, etc.) [3-5], it is of great practical importance to develop a catalytic oxidative methane-to-synthesis gas conversion process operating at a much lower temperature, preferably below 600°C. Recently, a use of Ln₂Ru₂O₇ (Ln = lanthanide) [6] and $Eu_2Ir_2O_7$ [7] and Ni/Al_2O_3 [8] as catalysts, operating nearly at thermodynamic equilibrium at > 750°C and atmospheric pressure, for the methane oxidation process has been suggested. We report here our preliminary results disclosing the use of CoO-rare earth oxide catalysts, particularly

^{*} To whom correspondence should be addressed.

Table 1 Oxidative conversion of methane to CO and $\rm H_2$ over unreduced CoO-rare earth oxide (Co/rare earth mole ratio = 1.0) catalysts (feed: a mixture of 67 mol% CH₄ and 33 mol% O₂, GHSV (gas hourly space velocity at STP): 5.2×10^5 cm³ g⁻¹ h⁻¹, pressure: 1.0 atm).

Catalyst	Temp. (°C)	CH ₄ conv. (%)	Selectivity (%)		H ₂ /CO	CO STY a
			CO	H ₂	ratio	$(\text{mol } g^{-1} h^{-1})$
CoO-CeO ₂	700	48.5	77.0	69.1	1.79	5.8
	500	35.4	61.3	64.8	1.80	5.3
CoO-Nd ₂ O ₃	700	64.0	88.5	82.8	1.87	8.7
	500	56.3	82.9	76.0	1.83	7.2
	350	48.1	76.3	66.3	1.74	5.7
CoO-Sm ₂ O ₃	700	52.8	86.6	71.2	1.64	7.1
	600	47.7	82.0	65.8	1.60	6.0
	500	48.3	80.1	62.3	1.56	6.0
	350	43.5	74.3	59.8	1.61	5.0
CoO-Eu ₂ O ₃	700	61.9	88.8	84.8	1.91	8.5
	600	58.5	86.3	82.4	1.91	7.8
	500	53.7	82.6	80.4	1.95	6.8
	300	46.4	73.3	69.6	1.90	5.2
CoO-Yb ₂ O ₃	700	79.2	90.0	88.4	1.97	11.2
	600	72.6	87.2	86.1	1.97	9.8
	500	70.4	83.1	83.2	2.00	9.0
	400	64.6	80.0	80.1	2.00	7.9
CoO-Yb ₂ O ₃ ^b	800	79.0	95.5	92.3	1.93	11.6
	700	74.0	92.5	91.5	1.98	10.6
	500	65.0	86.2	86.2	2.00	8.6
	300	59.4	80.3	80.3	2.00	7.4

^a Space-time-yield (or productivity).

CoO-Yb₂O₃, which is not only highly active and selective and much more productive but also operates at much lower temperatures ($\leq 700^{\circ}$ C, as low as 300°C) and far away from the thermodynamic equilibrium, in the oxidative conversion of methane to CO and H₂.

The CoO-rare earth oxide catalysts (table 1) were prepared by decomposing a finely ground mixture of cobalt nitrate and rare earth oxide in air at 600°C for 4 h, then powdering the resulting mass, pressing binder-free and crushing to 22–30 mesh size particles and finally calcining in air at 900°C for 6 h. The catalytic reactions were carried out in a quartz microreactor (i.d. 4 mm) containing 20 mg catalyst. The reaction temperature was measured by a chromel-alumel thermocouple located in the catalyst bed. The oxidative methane conversion reaction was carried out over the catalyst with or without its reduction by H_2 at 500°C in a flow (80 cm³ min⁻¹) of H_2 - N_2 mixture (20 mol% H_2) for 1 h. The water formed in the reaction was measured by condensing it

^b Reduced catalyst.

from the product gases at 0°C. The feed and product gases (viz. CH_4 , O_2 , CO, CO_2 , and H_2) were analysed by an on-line gas chromatograph using a spherocarb column. There was no formation of C_{2+} products; the conversion of oxygen in the reaction was almost 100%. The H_2 and CO selectivities were based on both products formed and methane reacted.

Among the CoO-rare earth oxide catalysts (table 1), the CoO-Yb₂O₃ showed the best performance in the oxidative conversion of methane, according to the reaction

$$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2 + 5.4 \text{ kcal/mol}(CH_4).$$

The results reveal that, by using the CoO-Yb₂O₃ catalyst, it is possible to obtain synthesis gas with $\rm H_2/CO$ ratio of about 2.0 (which is required for methanol and Fischer-Tropsch synthesis) at high conversion and selectivity and very high productivity (or space-time-yield) by oxidative conversion of methane at $\leq 700^{\circ}$ C (even at 300°C) and extremely high space velocity (5×10^{5} cm³ g⁻¹ h⁻¹), which are 2-3 and 1-3 orders of magnitude of that used in the steam reforming process [1] and the partial oxidation of methane over the $\rm Ln_2Ru_2O_7$ [6] and $\rm Ni/Al_2O_3$ [8] catalysts, respectively. The reduced catalyst showed no significant change in its activity and selectivity when on the time-on-stream (at 700°C) for 15 h. The catalyst may or may not be reduced by $\rm H_2$ before carrying out the methane oxidation reaction. However, the unreduced catalyst shows activity in the reaction only above 500°C; the catalyst is reduced by the $\rm H_2$ formed in the reaction at $\geq 500^{\circ}$ C and then shows the activity in the reaction at $< 500^{\circ}$ C. The catalyst in its active form seems to be Co and/or partially reduced CoO dispersed on the rare earth oxide.

The selectivity for CO and $\rm H_2$ is decreased with decreasing temperature. However, the selectivity at lower temperatures is very much higher than that expected according to the thermodynamic equilibrium, which favours the formation of CO and $\rm H_2$ over $\rm CO_2$ and $\rm H_2O$ in the reaction only above 700°C [6,8]. This fact reveals that the formation of CO and $\rm H_2$ at < 700°C is kinetically controlled.

The conversion of methane in its reaction with water or CO_2 (feed: 50 mol% CH_4 and 50 mol% H_2O or CO_2 , GHSV: 5.2×10^5 cm³ g⁻¹ h⁻¹ over the reduced $CoO-Yb_2O_3$ at $\leq 700^{\circ}C$ was negligibly small (0.5%). This suggests that the reaction path for the present catalytic oxidative conversion process is completely different from that (which involves a sequence of following reactions: combustion of a part of methane to CO_2 and H_2O with complete oxygen conversion, followed by the steam and CO_2 reforming of unconverted methane, and the shift and reverse shift reactions) considered for the high temperature non-catalytic process [1] and the earlier catalytic processes [6–8] operating at > 750°C. However, in the present case, synthesis gas seems to be formed more directly. Further work is necessary for understanding the reaction path and mechanism.

References

- [1] R.E. Kirk and D.F. Othmer, eds., *Encyclopedia of Chemical Technology*, Vol. 12, 3rd Ed. (Wiley-Interscience, New York, 1980) p. 938.
- [2] Ulmann's Encyclopedia of Industrial Chemistry, Vol A 12, 5th rev. Ed. (VCH, Weinheim, 1989) p. 169.
- [3] J.R. Anderson, Appl. Catal. 47 (1989) 177.
- [4] J.W.M.H. Geerts, J.H.B.J. Hoebink and K. van der Wiele, Catal. Today 6 (1990) 613.
- [5] N.D. Parkyns, Chemistry in Britain (1990) 841.
- [6] A.T. Ashcroft, A.K. Cheetham, J.S. Foord, M.L.H. Green, C.P. Grey, A.J. Murrell and P.D.F. Vernon, Nature 344 (1990) 319.
- [7] R.H. Jones, A.T. Ashcroft, D. Waller, A.K. Cheetham and J.M. Thomas, Catal. Lett. 8 (1991) 169.
- [8] D. Dissanayake, M.P. Rosynek, K.C.C. Kharas and J.H. Lunsford, J. Catal. 132 (1991) 117.