Effect of the metal oxide loading on the activity of silica supported MoO₃ and V₂O₅ catalysts in the selective partial oxidation of methane

D. Miceli, F. Arena^a, A. Parmaliana^{a,1}, M.S. Scurrell^b and V. Sokolovskii^c

Istituto CNR-TAE, Salita S. Lucia 39, I-98126 S. Lucia, Messina, Italy

^aDipartimento di Chimica Industriale, Università degli Studi di Messina,
Salita Sperone 31, c.p. 29, I-98166 S. Agata, Messina, Italy

^bCatalysis Programme, Division of Energy Technology, CSIR, PO Box 395,
Pretoria 001, South Africa

^cDepartment of Chemistry, University of the Witwatersrand, Johannesburg,
PO Wits 2050, South Africa

Received 14 December 1992; accepted 7 February 1993

Precipitated silica catalysts loaded with either MoO_3 (0.2–4.0 wt%) or V_2O_5 (0.2–5.3 wt%) have been studied in the selective partial oxidation of methane to formaldehyde with molecular oxygen at 520°C. The functionality of the SiO_2 surface towards the formation of HCHO is significantly promoted by V_2O_5 , while it is depressed by the MoO_3 .

Keywords: Metal oxide loading; methane; selective oxidation; MoO_3/SiO_2 and V_2O_5/SiO_2 catalysts

Among the numerous catalysts proposed for the partial oxidation of methane to formaldehyde the silica based systems are the more promising ones [1,2]. MoO₃ [3–7] and V_2O_5 [8–10] have been generally recognised as promoters of the SiO₂ support in the title reaction. Though the influence of the metal oxide loading in oxidation catalysis has been largely investigated [11,12], several authors have particularly addressed the issue of the MoO₃ [5,7] and V_2O_5 [10] loading on both the overall activity and selectivity to HCHO in the partial oxidation of methane. The negative effect of high MoO₃ loading (>7.8 wt%) has been associated with the formation of multilayers of crystalline MoO₃ on the SiO₂ support which preferentially leads to CO_x [5,7]. A facile oxidation—reduction cycle from V^{5+} to V^{4+}/V^{3+} under reaction conditions has been invoked to explain that the optimum loading of V_2O_5 is in the range 1.8–7.1 wt% [10]. Catalysts featuring higher V_2O_5 loadings exhibit inferior performance. Similarly, the low-loaded V_2O_5 systems are also less

¹ To whom correspondence should be addressed.

active, this being attributed to limited amounts of extractable oxygen [10]. Pitchai and Klier (see ref. [14] of ref. [1]) found an optimum MoO₃ loading corresponding to 4.5 wt% in promoting HCHO formation on MoO₃/SiO₂ · Al₂O₃ catalysts. Furthermore, a positive effect of the V_2O_5 loading on the catalytic activity of V_2O_5/SiO_2 catalysts has been envisaged for the partial oxidation of ethane [13,14] and ethanol [13]. In contrast, a negative effect of the V_2O_5 loading has been pointed out in the oxidation of toluene on V_2O_5/SiO_2 [15]. Bare SiO₂ itself exhibits a unique functionality in oxidising methane to HCHO [16,17]. In particular, in our previous work [17], dealing with the reactivity of various commercial SiO₂ samples, it has been ascertained that the efficacy of precipitated SiO₂ in the formation of HCHO is higher than those of MoO₃ and V_2O_5 promoted fumed silica catalysts. Such evidence led us to investigate the catalytic performance of differently loaded (0.2–4.0 wt%) MoO₃/SiO₂ and (0.2–5.3 wt%) V_2O_5/SiO_2 catalysts in the title reaction in order to assess the nature and the roles played by such oxides in the reactivity of the SiO₂ surface.

The supported MoO₃ and V_2O_5 catalysts have been prepared by incipient wetness impregnation of "precipitated" SiO₂ support (Si 4–5P grade, AKZO product; BET SA, 380 m² g⁻¹; pore volume, 1.14 cm³ g⁻¹) with a basic solution (pH = 11) of ammonium heptamolybdate or ammonium metavanadate. The impregnated samples were dried at 90°C for 24 h and then calcined at 600°C for 16 h. MoO₃ and V_2O_5 loadings were determined by atomic absorption spectroscopy (AAS). BET surface areas were obtained by N₂ adsorption measurements at –196°C. XPS measurements were performed with an Escalab MK II SIMS/XPS instrument. Low temperature oxygen chemisorption (LTOC) uptakes were determined at –78°C in a pulse mode after reduction in a H₂ flow (50 Ncm³ min⁻¹ for 5 h at 500°C according to the procedure suggested by Nag et al. [18]. The list of the catalysts used along with their physico-chemical characteristics is given in table 1. Catalytic tests have

Table 1 Physico-chemical properties of the MoO $_3/SiO_2$ and V_2O_5/SiO_2 catalysts

Catalyst	Metal oxide loading (wt%)	BET SA (m ² g ⁻¹)	Me/nm ²	Me/Si ratio ×10 ⁴		LTOC uptake
				theor.	XPS	$(\mu mol g_{cat}^{-1})$
SiO ₂		380				0.6
MoO ₃ /SiO ₂	0.2	311	0.026	8	9	2.7
	1.1	314	0.146	46	13	28.6
	2.0	311	0.269	85	39	37.3
	4.0	187	0.895	174	48	106.7
V_2O_5/SiO_2	0.2	270	0.049	13	47	7.3
	1.0	272	0.240	67	48	21.7
	2.0	257	0.510	134	137	29.9
	5.3	231	1.510	370	139	92.7

been made by using a specifically designed batch reactor described elsewhere [15] operating at 1.7 bar and 520°C with a catalyst sample of 1.0 g and a recycle flow rate of 1000 Ncm³ min⁻¹. The reaction mixture consisted of 18 mmol of methane, 9 mmol of oxygen as oxidant ($CH_4/O_2 = 2$), 18 mmol of nitrogen as standard for gas chromatographic (GC) analysis and 53 mmol of helium as diluent.

Table 2 shows the activity data of MoO₃ and V_2O_5 catalysts expressed in terms of overall reaction rate $(10^{-7} \text{ mol}_{CH_4} \text{ g}_{cat}^{-1} \text{ s}^{-1})$ and specific reaction rate $(10^{-10} \text{ mol}_{CH_4} \text{ m}^{-2} \text{ s}^{-1})$ and product selectivity. A monotonically decrease in the activity with increasing metal oxide loading has been found for MoO₃ catalysts, while for V_2O_5 loading in the range 0.2–5.3 wt% a significant enhancing effect of the original activity of the SiO₂ has been noticed. The product selectivity indicates that: (i) both MoO₃ and V_2O_5 exert a higher oxidising action on the reaction mixture since the CO₂ selectivity found for the oxide catalysts is higher than that of unpromoted SiO₂ even at lower activity levels; (ii) a low extent of CO formation ranging between 1 and 7% has been found for all the catalysts; this indicates occurrence of a similar reaction pathway for both systems; and (iii) the HCHO selectivity increases with increasing MoO₃ loading and falls with increasing V_2O_5 loading; these trends reflect the inverse relationship between conversion and selectivity to HCHO generally observed for methane partial oxidation catalysts [6].

From table 1 it can be seen that in the case of both MoO_3 and V_2O_5 loaded catalysts there is a decrease in BET surface area with increasing the metal oxide loading. For both MoO_3 and V_2O_5 systems the XPS atomic ratios are lower than the theoretical ones. In MoO_3/SiO_2 catalysts the surface occupancy (Mo/nm^2) is slightly lower than the occupancy (V/nm^2) calculated for the V_2O_5/SiO_2 catalysts. These similarities in physico-chemical properties contrast with the differences in

Table 2 Activity and selectivity of the MoO_3/SiO_2 and V_2O_5/SiO_2 catalysts in the selective partial oxidation of methane at $520^{\circ}C$

Catalyst	Metal oxide loading (wt%)	Reaction rate	Selectivity (%)			
		$\frac{(10^{-7} \text{ mol}_{\text{CH}_4})}{g_{\text{cat}}^{-1} \text{ s}^{-1}}$	$(10^{-10} \text{ mol}_{\text{CH}_4} \text{ m}^{-2} \text{ s}^{-1})$	CO ₂	СО	НСНО
SiO ₂		2.38	6.3	38	5	57
MoO ₃ /SiO ₂	0.2	1.82	5.8	56	3	41
	1.1	1.51	4.8	62	7	31
	2.0	1.34	4.3	65	2	33
	4.0	0.33	1.7	55	_	45
V ₂ O ₅ /SiO ₂	0.2	1.12	4.1	48	1	51
	1.0	2.76	10.1	67		33
	2.0	4.44	17.3	69	4	27
	5.3	7.60	32.9	70	2	28

catalytic behaviour indicating that the catalytic action is determined by some other factor(s). It has been claimed by several workers [19,20] that LTOC measurements correlate with the activity of selective oxidation catalysts. In the present case such a correlation is not found for MoO₃ catalysts as shown in fig. 1 where activity is expressed in terms of space time yield to HCHO (STY_{HCHO}, g kg_{cat}⁻¹ h⁻¹). It is proposed that a straight correlation exists between activity and the concentration of surface reduced sites of the working catalysts as reflected in HTOC (high temperature oxygen chemisorption) measurements [21]. Overall STYs for MoO₃/SiO₂ fall steadily with MoO₃ loading. For low-loaded V₂O₅/SiO₂ systems (up to 1 wt%) a decrease in specific activity and STY with respect to the SiO₂ support is seen. Such a behaviour is the consequence of a strong interaction between SiO₂ and V₂O₅ (much more stronger than that between SiO₂ and MoO₃) which results in a partial poisoning (blocking) of the active surface of the bare SiO₂. This hypothesis is further supported by the remarkable decrease in the specific surface area of the SiO₂ owing to small V₂O₅ addition [15]. In fact, the BET SA of the SiO₂ falls from 380 to 270 m² g⁻¹ for 0.2% V_2O_5 addition. It is noteworthy that for tenfold higher loaded MoO₃/SiO₂ catalyst (2% MoO₃/SiO₂) a slighter decrease in BET surface area has been observed. This indicates the occurrence of a weaker interaction between MoO₃ and SiO₂ with respect to that occurring between V₂O₅ and SiO₂. The increase in activity found for higher loaded (>1 wt%) V₂O₅ catalysts is likely due to the creation of new active sites on the supported V₂O₅ layer. These arguments allow us to propose for unpromoted SiO₂ and V₂O₅ or MoO₃ promoted silica catalysts the surface modelling depicted in fig. 2. According to this scheme we

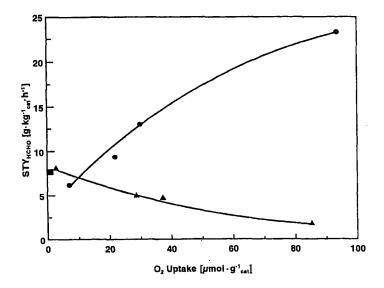


Fig. 1. Relationship between LTOC uptake and space time yield to HCHO on (\blacksquare) bare SiO₂, (\blacktriangle) MoO₃/SiO₂ and (\bullet) V₂O₅/SiO₂ catalysts.

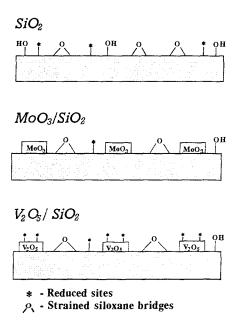


Fig. 2. Surface modelling for SiO₂, MoO₃/SiO₂ and V₂O₅/SiO₂ systems.

infer that the surface of the SiO₂ bears two kinds of active sites, i.e., * (reduced sites) and O₃ sites (strained siloxane bridges) which are effective in activating O₂ and CH₄ molecules respectively. Both MoO₃ and V₂O₅ can partially mask active sites of the precipitated SiO₂ surface with the difference that V₂O₅ generates own reduced active sites able to activate gas-phase oxygen. On the contrary, we observe that a peculiar interaction pathway between MoO₃ and SiO₂ has been already explained by inferring an encapsulation mechanism of MoO₃ within the SiO₂ which causes the hydrothermal structural changes of the SiO₂ (i.e., lowering in BET SA) and the formation of hardly reducible SiMoO_x species [22]. This statement could account for the inability of the silica supported MoO₃ in assisting the formation and stabilisation of own reduced sites. The opposite effect exerted by MoO₃ (4 wt%) and V₂O₅ (5 wt%) dopants on the reactivity of the bare SiO₂ and particularly in the process of oxygen activation has been already correlated with the density of reduced sites determined by high temperature oxygen chemisorption measurements [21].

Finally, it is concluded that the activity observed with the bare SiO_2 is due to some specific surface sites possessing donor properties to activate molecular oxygen (i.e., Si^{3+} on structure defects of the precipitated silica [17]). These sites are influenced negatively by the presence of MoO_3 probably due to physically based masking of sites, but for V_2O_5 appreciable enhancement of activity is made possible by the introduction of additional specific reducible sites. The deeper understanding of the precise nature of the sites awaits the results of further surface characterization studies.

Acknowledgement

The financial support to this work by the Consiglio Nazionale delle Ricerche "Progetto Finalizzato Chimica Fine II" and Ministero Università e Ricerca Scientifica e Tecnologica is gratefully acknowledged.

References

- [1] R. Pitchai and K. Klier, Catal. Rev.-Sci. Eng. 28 (1986) 13.
- [2] M.J. Brown and N.D. Parkyns, Catal. Today 8 (1991) 305.
- [3] H.-F. Liu, R.-S. Liu, K.Y. Liew, R.E. Johnson and J.M. Lunsford, J. Am. Chem. Soc. 106 (1984) 4117.
- [4] M.M. Khan and G.A. Somorjai, J. Catal. 91 (1985) 263.
- [5] Y. Barbaux, A.R. Elamrani, E. Payen, L. Gengembre, J.P. Bonnelle and B. Grzybowska, Appl. Catal. 44 (1988) 117.
- [6] N.D. Spencer, J. Catal. 109 (1988) 187.
- [7] E. MacGiolla Coda, M. Kennedy, J.B. Monagle and B.K. Hodnett, Catal. Today 6 (1990) 559.
- [8] K.J. Zhen, M.M. Khan, C.H. Mak, K.B. Lewis and G.A. Somorjai, J. Catal. 94 (1985) 501.
- [9] N.D. Spencer and C.J. Pereira, J. Catal. 116 (1989) 399.
- [10] M. Kennedy, A. Sexton, B. Kartheuser, E. MacGiolla Coda, J.B. Monagle and B.K. Hodnett, Catal. Today 13 (1992) 447.
- [11] F.E. Massoth, Adv. Catal. 27 (1978) 265, and references therein.
- [12] B. Dadyburjor, S.S. Jewur and E. Ruckenstein, Catal. Rev.-Sci. Eng. 19 (1979) 293.
- [13] S.T. Oyama and G.A. Somorjai, J. Phys. Chem. 94 (1990) 5022.
- [14] J. Le Bars, J.C. Vedrine, A. Auroux, S. Trautmann and M. Baerns, Appl. Catal. 88 (1992) 179.
- [15] B. Jonson, B. Rebenstorf, R. Larsson and S.L.T. Andersson, J. Chem. Soc. Faraday Trans I 84 (1988) 1897.
- [16] S. Kasztelan and J.B. Moffat, J. Chem. Soc. Chem. Commun. (1987) 1663.
- [17] A. Parmaliana, F. Frusteri, D. Miceli, A. Mezzapica, M.S. Scurrell and N. Giordano, Appl. Catal. 78 (1991) L7.
- [18] N.K. Nag, K. Chary and V. Subrahmanyam, J. Chem. Soc. Chem. Commun. (1986) 1147.
- [19] B.M. Reddy, K. Narsimha, Ch. Sivarj and P. Kanta Rao, Appl. Catal. 55 (1989) L1.
- [20] N.K. Nag, J. Catal. 92 (1985) 432.
- [21] A. Parmaliana, V. Sokolovskii, D. Miceli, F. Arena and N. Giordano, Preprints, Petroleum Chemistry Division Inc.; Catalytic Selective Oxidation, ACS Symp. Series 37 (1992) 1076.
- [22] H.M. Ismail, M.I. Zaki, G.C. Bond and R. Shukri, Appl. Catal. 72 (1991) L1.