Oxidative coupling of methane. The effect of alkali chlorides on molybdate based catalyst leading to high selectivity in C₃-product formation

John Kiwi¹, K. Ravidranathan Thampi, N. Mouaddib, Michael Grätzel

Institut de Chimie Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

and

Peter Albers

Degussa AG, Abt. FCPh, D-6540 Wolfgang Hanau, Germany

Received 29 September 1992; accepted 12 January 1993

LiCl-Na₂MoO₄ was found to be an active catalyst for oxidative coupling of methane at temperatures around 620°C. In these systems, the selectivity for the formation of C₃-products exceeds the selectivity for the formation of C₂-products. While the homogeneous reaction of CH₄ and O₂ leads to C₃H₆ as C₃-product, the 50% LiCl-50% Na₂MoO₄ catalyst leads to C₃H₈ as the predominant C₃-product, indicating that in the latter case the reaction cannot be purely homogeneous. The dependency of the product distribution on temperature, gas composition, reactor dimensions, flow rate, CH₄/O₂ ratio and type of catalyst has been studied. The reaction was studied by co-feeding CH₄, O₂ and a diluent gas at atmospheric pressure continuously in a conventional flow reactor containing the catalyst. The reaction products observed were: C₂H₄, C₂H₆, C₃H₆, C₃H₈, H₂O and CO + CO₂. The two latter gases were the main oxidation products observed. Characterization of the catalysts used was carried out by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

Keywords: Methane coupling; molybdate-sodium; lithium chloride; propylene; propane

1. Introduction

During the last decade, oxidative coupling of CH₄ has become an important area of catalytic research. Following the pioneering work of Keller and Bhasin [1], much research has been carried out in this field. Recent work has been reviewed

¹ To whom correspondence should be addressed.

by Hutchings et al. [2], Anderson [3] and Mackie [4]. Previous work in our laboratory with molybdate catalysts useful in CH_4 activation has produced mainly C_2 -products [5,6].

This report shows the conditions and catalysts involved in CH_4 coupling leading to C_3H_x production (propane and propylene). The aim of the study was to look into the various possibilities of converting CH_4 to a high value added product, through a low-cost one-step catalytic process. C_3H_6 and C_3H_8 are also very desirable reaction products, since they can be easily separated from CH_4 stream after oxidation, compared to C_2H_4 and C_2H_6 . Arata et al. have observed the formation of C_3 -hydrocarbons during methane dimerization catalyzed by Na^+ doped type catalysts [7]. From the mechanistic point of view, the production of C_3H_x (x=6,8) may involve reaction between vinyl radicals $CH_2=CH$ · with CH_3 .

Oxidative methane conversion to C_3H_x catalyzed by PbO, PbSO₄ [8] and several alkaline-earth oxides has been reported by Carreiro and Baerns [9]. The purpose of the present work is to explore the role of alkali chlorides in the production of C_3 -products. Chlorine is well known to increase the selectivity of partial oxidation reactions, such as ethylene oxide from ethylene [10] and formaldehyde from methane [11]. Burch et al. [12,13] have shown that oxidative coupling carried out with chlorine-containing catalysts produces substantial amounts of ethylene. Work reported by that group in the last five years indicates that chlorine seems to block total oxidation sites on the surface of oxide catalysts (such as MnO₂), resulting in higher SC₂ (selectivity for C_2 -products) values. It has been suggested that an important role of chlorine is to produce new active sites over the catalyst, that are selective to the activation of ethane rather than methane [14].

2. Experimental

The reactor was a quartz U-tube. The tube was 560 mm in length with 6 mm i.d. The fixed catalyst bed was held in position by quartz wool plugs. The reactor was operated in the single-pass mode. The first and last 7 cm of the reactor were outside the furnace, 42 cm were inside the furnace. The catalyst was situated in the second half of the U-tube. With 1.2 g catalyst, the free volume of the cell (on the average) was 15.8 cm³. Always "new" quartz reactors were used for the empty reactor runs and in each of the additional series of experiments reported in tables 1, 2 and figs. 1, 2. Catalysts were prepared by mechanically mixing the pure molybdate compound and alkali chloride in each case.

The reaction was allowed to proceed for 2 h at each reaction temperature, before collecting the data with good reproducibility.

Product analysis was performed by gas chromatography (GC) using a thermal conductivity detector. The gases CH₄, C₂H₄, C₂H₆, C₃H₆, C₃H₈ and CO₂ were detected on a Porapak QS column at 60°C, using He as carrier gas in a Carlo Erba

HRGC 5300 Mega Series gas chromatograph. For CO and O_2 analysis, a molecular sieve 5 Å column at 40°C was used. The absence of C_2H_2 in the product stream was confirmed chromatographically by using a Porasil-B column. H_2 was analysed on a molecular sieve 5 Å column, using Ar as the carrier gas. Water produced during the reaction was trapped at the reactor exit. C_3H_6 was detected in the gap phase as well as in the liquid H_2O collected in the trap. Small quantities of HCHO and CH_3OH (less than 2%), were also observed (as reaction products) in both phases. Inlet gas flows were measured by calibrated flow meters. The activity of the catalysts is defined by the percentage conversion of CH_4 into all products. The selectivity X(i)% to product i is defined as the percentage amount of product i/amount of total reaction products.

The XPS-measurements were performed using a Leybold surface analyser equipped with a separate gas reaction cell attached to the spectrometer chamber. The base pressure of the spectrometer was 2×10^{-10} mbar and during the measurements 8×10^{-9} mbar. The XPS-spectra were recorded using a twin anode X-ray gun (Mg $K_{\alpha}/Al K_{\alpha}$) at a power of 200 and 250 W respectively, and a hemispherical energy analyzer (Leybold EA11/100). The spectrometer calibration was repeatedly performed, following and referencing to the Au $4f_{7/2}$ -signal at 84.0 eV. X-ray powder diffraction patters were recorded from 0° to 90° (2O) using a Hijaku diffractometer. A relatively large X-ray beam, 5 mm in diameter, permitted analysis of large quantities of powder, providing structural information on the main phases of each sample. No BET surface area was measured since the catalyst is a mixture of two polycrystalline inorganic salts.

3. Results and discussion

Table 1 presents the variation in C_2 - and C_3 -selectivity (SC₂ and SC₃), C_2 - and C_3 -yield (YC₂ and YC₃), and CH₄-conversion (C_{C_1}) with change in temperature. The data on empty reactor run presents the homogeneous thermal reaction taking place when a flowing gas consisting of 7.5 ml/min CH₄, 8.5 ml/min O₂ and 14 ml/min He react in a relatively long (560 mm × 6 mm i.d.), empty reactor. The formation of C₂-products (C₂H₄ and C₂H₆) is important at the temperatures shown in table 1. In agreement with previous work, CH₄ can be dimerized through a homogeneous gas-phase reaction in the presence of oxygen [15–17]. An increase in C₂-selectivity up to 650°C was observed in the empty reactor results, reported in table 1. This shows that up to this temperature, the formation of methyl radicals increases, favouring C₂-formation [18,19]. It also shows that selectivity towards C₂ + C₃ products is about 26%, whilst the selectivity towards CO + CO₂ products is > 70%.

Numerous preliminary experiments varying the gas flow, ratio CH_4/O_2 , reactor geometry and dimensions, and quantity of diluent gas added (He) were carried out in order to achieve the lowest selectivity towards the formation of C_3 -products. In this way, the heterogeneously catalyzed contribution towards the CH_4 coupling

Table 1 Methane conversions, selectivities and yields (in %) of C_2 - and C_3 -products for various catalysts and temperatures used

$T(^{\circ}C)$	Empt	y react.	or		ļ	1.2 g	Na ₂ MoO	204		ļ	0.6 g]	Na_2Mo	$Na_2MoO_4 + 0.6 g NaCl$.6 g Na	び	0.6 g l	$Na_2MoO_4 + 0.6 g$	O ₄ + 0.	6 g LiC	
	ان	SC_2	SC3	Cc, SC, SC, YC, Y	YC3	C_{c_1}	SC_2	SC_3	YC_2	YC3	S	SC2	SC3	YC2	YC3	ا ئ	SC2	SC3	YC_2	YC3
570	7.0	10	2.0	0.7	0.1	17	27	1	4.6		2.0	8.0		0.2		1	9	15	4.4	1.6
290	8.0	16	2.0	1.3	0.2	18	53	ı	5.2	ı	4.0	15	ı	9.0	1	10	29	22	2.9	2.2
610	9.0	70	2.0	1.8	0.2	16	30	ı	8.8	ı	5.0	25	ı	1.2	ı	9.0	22	32	2.0	2.9
630	12	23	2.0	2.7	0.2	15	30	ı	4.5	ı	6.5	27	ı	1.7	ŧ	8.0	21	35	1.6	2.8
650	18	76	1.9	4.7	9.4	14	30	ı	4.2	ı	8.5	28	ı	2.4	ŧ	9.0	20	28	1.8	2.5
0/9	20	74	1.8	8.4	0.4	14	30	ı	4.2	ı	9.0	28	ı	5.6	1	11	20	13	2.2	1.4
069	21	19	1.7	4.0	0.3	14	28	3.0	3.9	0.4	9.5	59	7.0	2.7	0.7	15	20	7.0	3.0	1.1
710	22	17	1.4	3.7	0.3	16	56	2.5	4.2	0.4	13	28	10	3.6	1.3	16	19	5.0	3.0	8.0
730	23	14	1.0	3.2	0.2	22	15	2.0	3.3	9.4	19	23	13	4.4	2.5	17	18	5.0	3.1	8.0

reaction could later be shown distinctively. In table 1, a residence time of about 31.6 s is maintained. The use of He as diluant was necessary to reduce the residence time for the two reactive gases, CH_4 and O_2 in the reaction tube. The C_3 -product due to the homogeneous reaction consists only of C_3H_6 . No temperatures higher than 730°C were applied since a steady decrease in the values of SC_3 and YC_3 beyond 740°C was observed with increasing temperature.

In table 1, experimental data shows that when using 1.2 g of Na₂MoO₄ as catalyst, SC₂ values of 30% are seen at 630°C as compared to an SC₂ value of 26% reported for an empty reactor at this temperature. Na₂MoO₄ is a dehydration and dehydrogenation agent in gas-phase reactions at temperatures above 450°C [20,21]. For Na₂MoO₄, a decrease in C₂-selectivities (SC₂) was observed at temperatures higher than 670°C. This could be due to liquifaction of the catalyst as it is transformed into molten phase at 687°C [22–24]. Furthermore, the long contact time of C₂H₄ and C₂H₆ at the low flow rates used, allowed the C₂- and C₃-products to be converted into CO and CO₂. High selectivity values observed for CO and CO₂ in these experiments seem to confirm this rationalization. For the homogeneous catalytic process in the absence of the catalyst \approx 80% of O₂ in the feed stream gets consumed at 620°C. When the reactor contains 1.2 g catalyst \approx 90% O₂ is consumed, confirming the observed increase in catalytic process taking place.

The data showing the conversions, selectivities and yields in a reactor using the same gas stream, but containing 0.6 g of Na₂MoO₄ and 0.6 g of NaCl as a function of temperature is shown next in table 1. It is seen that SC₃ values at all temperatures increase significantly over the values for SC₃ reported when using Na₂MoO₄ alone. Li₂CO₃ was tried, but was found to hinder the C₃-coupling reaction. Therefore, it is the added chloride that creates a selective coupling catalyst leading to C₃-products and not a possible cation effect.

Table 1 also presents the results when 7.5 ml/min CH₄, 8.5 ml/min O₂ and 14 ml/min He are reacted over 0.6 g of Na₂MoO₄ and 0.6 g LiCl. Values for SC₃ up to 35% are noticed at 630°C with a concomitant C₃ yield of 2.8%. The combined C₂and C₃-yields at 630°C turn out to be around 4.4%. The relatively high selectivities for C₂- and C₃-products observed below 650°C seem to be related to the fact that below this temperature, no significant CO evolution is observed. The C₃-product observed was around 20% of C₃H₆ and 80% of C₃H₈ at 620°C. The ratio of C_3H_6/C_3H_8 increased with temperature up to 1: 1 at 690°C. Therefore, when using a catalyst, LiCl-Na₂MoO₄, different selectivities to C₃H₆ and C₃H₈ are observed as compared to the results obtained for an empty reactor. In the latter case, only C₃H₆ was observed. Addition of LiCl significantly increases C₃-selectivity, but hinders the conversion below the gas-phase level at $T>610^{\circ}$ C. The main problem with molybdate catalyzed CH₄ coupling is the high yields observed for CO and CO₂ evolution, the total oxidation products [5-7,12-14]. It seems that up to 630°C, the catalytic centers in the Na₂MoO₄ + LiCl catalyst are involved in the generation of C₂- and C₃-products. Whilst the selectivity of the C₃-product increases, a concomitant decay in the selectivity of the C₂-product is observed.

From the data above 650°C shown in table 1, it is observed that by introducing a catalyst, LiCl-Na₂MoO₄, approximately only one half to two-third CH₄ conversion takes place as compared to that in an empty reactor. The addition of Cl⁻ greatly reduces CH₄ conversion and, therefore, the total yield of higher hydrocarbon products, at these temperatures. In fact, above 650°C, the chloride poisons C₃ formation less than C_2 , resulting in a net higher selectivity to C_3 . It is also important to note that between 570 and 630°C, the methane conversion improved in the presence of Na₂MoO₄-LiCl catalyst when compared to that in an empty reactor and this is reflected in the higher YC₂ and YC₃ values. With only Na₂MoO₄ catalyst present, the CH₄ conversions were generally higher at all temperatures. However, no C₃-products were observed below 670°C. Na₂MoO₄ has low selectivity for C₃products as seen in table 1. It melts at 687°C. The selectivity towards C₃-products when NaCl is added $(T > 670^{\circ}\text{C})$ to Na₂MoO₄ goes up considerably. NaCl melts at 801°C. LiCl is used as a catalyst promoter because it is more covalent than NaCl. It melts as 610-614°C, indicating that liquid-phase LiCl on Na₂MoO₄ at temperatures around 600°C, favours the diffusion of Cl⁻ in the molten state [23,24], Concomitantly, the SC₃ values reported when using Na₂MoO₄ + LiCl as catalysts (table 2) increase under these conditions. The amounts of CO and CO₂ observed were lower in the presence of LiCl than in its absence, which is reflected in the increased values of SC_2 and SC_3 when LiCl is used, as seen in table 1. It seems that chloride incorporates on the host oxide lattice surface, either activating the surface or possibly producing defects in this surface. These defects would be created in the range of the reaction temperatures when LiCl is on the molybdate surface. At any rate, the chloride present is sufficient to modify the catalyst surface and create active and selective sites for CH₄ oxidation. This observation agrees with work recently reported by Burch et al. [14] on heterogeneous chlorine-promotion reactions in CH₄ activation.

Mo⁶⁺-O⁻ surface species can be produced by the dissociation of molybdates at the reaction temperatures used [5,6] and concomitant reduction of Mo⁶⁺-ions by CH₄ [2-4]. The Mo⁶⁺-O⁻ surface species would then be the active centers involved

Table 2 XPS results showing surface concentrations of various elements (in at%) present in molybdate catalyst

Element	Li ₂ MoO ₄	Na ₂ MoO ₄	$Na_2MoO_4 + LiCl$ unreacted	$Na_2MoO_4 + LiCl$ reacted 730°C/9 h	Na ₂ MoO ₄ reacted 660°C/9 h
Na	traces	12.7	4.46	3.80	5.54
0	46.1	43.5	9.00	12.3	14.8
C	40.6	33.9	55.7	34.2	50.9
Mo	10.4	9.83	0.53	1.04	0.86
C1	_		28.1	38.5	24.3
Li	2.86		2.24	5.21	2.38
Si	_	_	_	5.1	1.2

in CH_4 oxidation on molybdate catalysts. This methyl radical formed during the reaction leads to the formation of C_3 -products [4,25],

$$CH_3 \cdot + C_2H_4 \rightarrow C_3H_7 \cdot \rightarrow C_3H_6 + H \cdot \tag{1}$$

and by radical recombinations,

$$C_2H_3\cdot + CH_3\cdot \rightarrow C_3H_6, \tag{2}$$

$$C_2H_5\cdot + CH_3\cdot \rightarrow C_3H_8, \tag{3}$$

$$C_3H_7\cdot + H\cdot \to C_3H_8. \tag{4}$$

From the radical point of view [2–4], a mechanism involving the coupling of $CH_3 \cdot + C_2H_3 \cdot$ (vinyl) is possible, as shown by eq. (2) leading to the C_3 -products. Alkali chlorides added would create acid centers in the catalyst and allow $CH_3 \cdot + C_2H_4$ reaction [26,27]. Propane and propylene occurring in the reactions

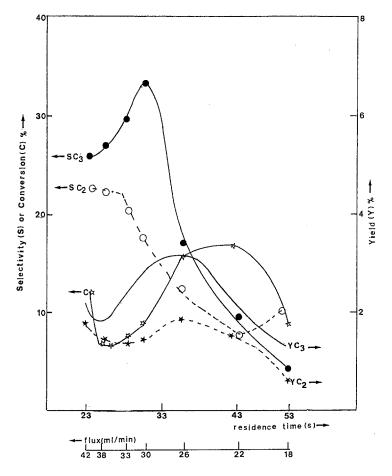


Fig. 1. Variation of selectivities and yields for C_2 - and C_3 -products as the total flux of $CH_4 + O_2 + He$ is varied at $620^{\circ}C$ over 0.6 g of $Na_2MoO_4 + 0.6$ g of LiCl catalyst.

(eqs. (1)–(4)) due to the action of chloride containing catalyst may, under our specific experimental conditions, involve all these reactions simultaneously.

Fig. 1 shows the selectivities and yields of the products of CH_4 coupling when the total flux of gases is varied, conserving the ratio of $CH_4/O_2/He$ gas as used throughout in table 1. Reactions were carried out at $620^{\circ}C$. The decrease in C_2 - and C_3 -selectivity at lower flow rates is accountable to the fact that the contact time of the primary gases (C_3H_6 and C_2H_4) with the catalyst will be longer. This allows reaction of C_3H_6 and C_2H_4 with O_2 more readily, leading to CO, CO_2 and H_2O . It is to be noted that CH_4 conversion is not substantially changed by using a faster total gas flow. At low methane conversion, the O_2 remains at a relatively high concentration and the oxidation of the methyl radicals becomes more important compared with the coupling reaction. The adding of He reduces the residence time of the active gases CH_4 and O_2 and depresses the overall yields, but a higher selectivity for C_2 - and C_3 -products was observed in this case.

Fig. 2 shows the effects on C_2 and C_3 product formation when the ratio $R \, \text{CH}_4/\text{O}_2$ is varied at 620°C in the CH₄ coupling reaction. It is readily seen that a

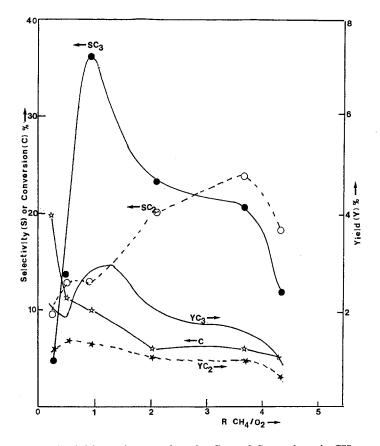


Fig. 2. Variation of selectivities and conversions for C_2 - and C_3 -products in CH_4 coupling at 620°C as a function of the ratio CH_4 to O_2 over a 0.6 g $Na_2MoO_4 + 0.6$ g LiCl catalyst.

ratio CH_4/O_2 somewhat below 1 affords the highest selectivity and yield for C_3 -products. Assuming that methyl radicals are formed on the catalytic surface by dissociation of CH_4 and that these radicals fully react in the gas phase after desorption [2–4], two comments can be made on the experimental results observed in fig. 2:

- (i) The high values of SC_2 observed when CH_4 is present in excess $(R CH_4/O_2>1)$, suggest that the amount of oxygenated radicals interacting with CH_3 ·leading to CO, CO_2 is low as compared to the CH_3 ·radicals present.
- (ii) A high initial oxygen content, e.g., $CH_4/O_2 = 0.3$, favours the formation of $\cdot HO_2$, $\cdot OH$ and $\cdot O$ radicals, resulting in lower SC_2 and SC_3 values as seen in fig. 2 (left-hand side). Methane may be activated in the presence of O_2 as follows:

$$CH_4 + O_2 \rightarrow CH_3 \cdot + \cdot HO_2, \tag{5}$$

$$CH_3 \cdot + O_2 \rightarrow CH_2O + \cdot OH, \tag{6}$$

$$CH_3 \cdot + O_2 \rightarrow CH_3O \cdot + \cdot O. \tag{7}$$

The influence of the reactions involving $\cdot HO_2$, $\cdot OH$ and $\cdot O$ should decrease with increasing CH_4/O_2 ratio because the oxygen concentration and, therefore, the concentration of oxygenated radicals reported in reactions (5), (6), (7), decreases.

Fig. 3a shows the Mo 3d X-ray photoelectron (XPS) measurements carried out on an unreacted $Na_2MoO_4 + LiCl$ sample. The same sample after reaction at 730°C for 9 h, is shown in fig. 3b. The spectra shown in figs. 3a and 3b have been obtained by subtraction of X-ray satellite peaks, and fit to a second-order polynomial according to ref. [28]. In fig. 3a, the narrow well defined peaks are indicative of one chemical state for the Mo (Mo VI) as seen from the shape of the doublet Mo 3d 5/2. The determination of the electrostatic charging of the catalyst samples was done by internal referencing to the contaminating aliphatic surface carbon at 284.6 eV, by cross checking the peak distances between C 1s, O 1s, Mo 3d 5/2 and Mo 3p 3/2 signals for the fresh and the reacted specimens, relative to pure standard samples of MoO₃ and by evaporating traces of gold onto the catalyst specimens and measuring the position of the Au signals. The quantitative results shown in table 2 indicate that on the surface of the LiCl + Na₂MoO₄ samples under the different experimental conditions used, a lot of chloride is still present. The quantitative determination of the elements as shown in table 2 has been referenced in the XPS-literature [29]. The surface enrichment of Si observed in the reacted catalyst is due to the contamination occurring from the attack of LiCl on the walls of the quartz reactor. Since the formation of Li₂SiO₃ indicates Li loss by the sample but the overall composition of the catalyst appears to be stable (table 2), this short time Li depletion would not be detectable due to the LiCl excess present as catalyst. Therefore, the overall surface of the catalyst would be stable, but a compensatory change is taking place on the catalyst. The formation of silicates was later verified in separate X-ray diffraction experiments. The surface concentration of C before

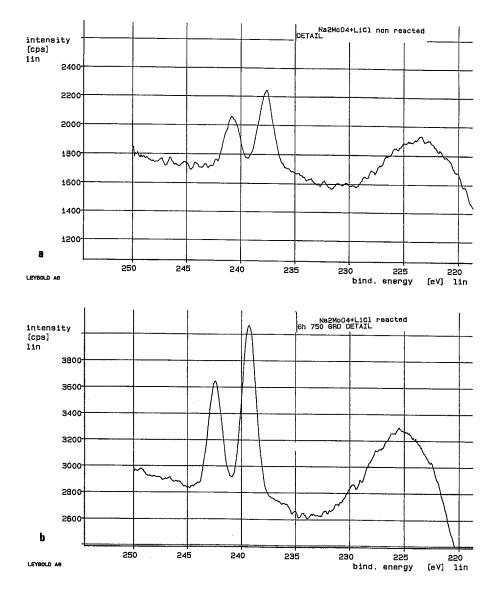


Fig. 3. (a) XPS spectra of the Mo 3d region for an unreacted Na₂MoO₄ + LiCl sample. Uncorrected spectra. (b) XPS spectra of the Mo 3d region for a Na₂MoO₄ + LiCl sample reacted at 730°C for 9 h. Uncorrected spectra.

and after reaction was nearly the same for all samples as shown in table 2. No C enrichment of the catalysts would be noticed during the reaction. The surface C present, reported by XPS is, therefore, derived out of the absorption from the atmosphere. The binding energy evaluation for the Mo 3d 5/2 doublet in table 2 was carried out according to refs. [30,31]. For the unreacted catalyst, the Cl⁻/Li observed ratio was 14/1 and not 1/1 (as seen in table 2) as stoichiometry suggests.

Catalyst	Conditions	O (eV)	Mo (eV)
Li ₂ MoO ₄	unreacted	530.6	232.7
Na_2MoO_4	unreacted	530.3	232.3
$Na_2MoO_4 + LiCl$	unreacted	530.9	232.7
$Na_2MoO_4 + LiCl$	730°C/9 h	531.1	232.4
Na ₂ MoO ₄ + LiCl	660°C/9h	530.8	232.4

Table 3
Corrected binding energies for molybdate catalysts used

This is due to the fact that an ideal stoichiometry can be detected by XPS only on clean, flat surfaces [28–31], not on rough irregular powdered type aggregates. Moreover, XPS measures the surface percentage of the atoms present in the upper layer. A high percentage of C (55.7%); O (9%); Cl⁻ (28.1%); and Na (4.46%), proportionally cover most of the available catalyst [28], shielding the XPS surface signal. C sitting on Mo has previously been reported to produce shielding effects (when reporting surface enrichment) [30]. Cl⁻ has a lower potential for surface deposition than cations such as Na, Mo, Li [29], and its relative surface density influences positively the intensity observed for this element by XPS signals.

Surface enrichment during the reaction for Mo (1.04% versus 0.53%) is reflected in fig. 3b by the relative magnitude of the peaks observed in the Mo 3d 5/2 doublet. Surprisingly, no distinct peak broadening is seen for the Mo 3d 5/2 doublet when comparing the unreacted and reacted samples in figs. 3a and 3b. Therefore, only one single valency state for Mo was found by XPS in both cases (Mo VI). Binding energy evaluation for the Mo 3d 5/2 signal after charging correction [28] was carried out for the different samples and is hereby reported in table 3. These signals indicate one singly valency state for Mo.

X-ray diffraction (XRD) was carried out for $Na_2MoO_4 + LiCl$ samples reacted at 660 or 730°C (9 h). Formation of up to 5.1% of Li_2SiO_3 was observed in the diffractogram, besides the typical spectra of $Na_2MoO_4 + LiCl$. This Li_2SiO_3 was formed when molten LiCl corroded the quartz reactor at the reaction temperatures. No additional phases were detected in the reacted Na_2MoO_4 by XRD technique. This is a proof that the catalyst is not affected during long-term catalysis.

4. Conclusion

The present work reveals that the direct formation of noticeable amounts of C_3 -hydrocarbons during methane coupling is possible. This study presents in a phenomenological way the participation of Cl^- -ions in the formation of surface catalytic sites, which improve the C_3 -selectivity during CH_4 coupling. The initial results obtained suggest that the role of chloride is complex. This study has shown that in this reaction, the adequate choice of catalyst material, temperature, residence time

(high), reactant composition, dilution factor (low) and proper reactor design are important in achieving favourable SC_3 yields. In order to minimize gas-phase reactions during our work, the CH_4 and O_2 were diluted with He and a low CH_4/O_2 ratio was used.

Acknowledgement

We thank Professor Guy-A. Martin for stimulating discussions in the course of this work.

References

- [1] G.E. Keller and M.M. Bhasin, J. Catal. 73 (1982) 9.
- [2] G.J. Hutchings, M.S. Scurrell and J.R. Woodhouse, Chem. Soc. Rev. 18 (1989) 251.
- [3] J.R. Anderson, Appl. Catal. 47 (1989) 177.
- [4] J.C. Mackie, Catal. Rev. Sci-Eng. 33 (1991) 169.
- [5] J. Kiwi, K.R. Thampi and M. Grätzel, J. Chem. Soc. Chem. Commun. (1990) 1690.
- [6] J. Kiwi, K.R. Thampi, M. Grätzel, P. Albers and K. Seibold, J. Phys. Chem. 96 (1992) 1344.
- [7] H. Matsuhashi, K. Sakurai and K. Arata, Chem. Lett. 4(1989) 585.
- [8] M. Baerns, Catal. Today 1 (1987) 357.
- [9] J. Carreiro and M. Baerns, React. Kinet. Catal. Lett. 35 (1987) 349.
- [10] J.M. Berty, Appl. Ind. Catal. 1 (1983) 207.
- [11] C.F. Cullis, D.E. Keene and D.L. Trimm, J. Catal. 19 (1970) 378.
- [12] R. Burch, G.D. Squire and S.C. Tsang, Appl. Catal. 46 (1989) 69.
- [13] R. Burch, S. Chalker, G.D. Squire and S.C. Tsang, J. Chem. Soc. Faraday Trans. 86 (1990) 1607.
- [14] R. Burch, S. Chalker and P. Loader, Proc. Xth Int. Congr. on Catalysis, Budapest 1992, pp. 8-17.
- [15] D.C. Yates and N.E. Zlotin, J. Catal. 124 (1990) 562.
- [16] M. Hatano, P. Hinson, K.S. Vines and J.H. Lunsford, J. Catal. 124(1990) 557.
- [17] Z. Kalenik and E. Wolf, J. Catal. 124(1990) 566.
- [18] G. Lane, E. Miro and E. Wolf, J. Catal. 119 (1989) 161.
- [19] T.A. Garibyan and L.Ya. Margolis, Catal. Rev. Sci-Eng. 31 (1990) 355.
- [20] E. Drauglis and R. Jaffe, *The Physical Basis for Heterogeneous Catalysis* (Plenum Press, New York, 1975).
- [21] R. Busey and O. Keller, J. Chem. Phys. 41 (1964) 215.
- [22] S.J. Korf, J.A. Roos, N.A. de Bruijn, J.G. van Ommen and J.R. Ross, J. Chem. Soc. Chem. Commun. (1987) 1433.
- [23] T. Komatsu, T. Amaya and K. Otsuka, Catal. Lett. 3 (1989) 317.
- [24] T. Ito, J.-X. Wang, C.-H. Lin and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 5062.
- [25] H. Zanthoff and M. Baerns, Ind. Eng. Chem. Res. 29 (1990) 2.
- [26] V. Kazansky and B. Shelimov, Res. Chem. Interm. 15 (1991) 1.
- [27] E. Tsang and P. Hampton, J. Phys. Chem. Data 15 (1986) 1087.
- [28] A. Proctor and P. Sherwood, Anal. Chem. 52 (1980) 2315.
- [29] C.D. Wagner, Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer, Phys. Elect. Div., Minneapolis, 1979).
- [30] T.A. Patterson, J.C. Carrer, D.E. Leyden and D.M. Hercules, J. Phys. Chem. 80 (1976) 1700.
- [31] S.O. Grim and L.J. Matienzo, Inorg. Chem. 14 (1975) 1014.