The role of carbon dioxide in the oxidative dimerization of methane over Li/MgO

Kent Coulter and D. Wayne Goodman¹

Department of Chemistry, Texas A&M University, College Station, TX77843-3255, USA

Received 17 January 1993; accepted 30 April 1993

 CO_2 is strongly adsorbed on Li/MgO as a surface carbonate and desorbs concomitantly with Li with an activation energy of desorption of 210 kJ/mol. The C_2 product is strongly influenced by the presence of CO_2 , 0.5 Torr being sufficient to substantially lower the rate of C_2 production and to establish an activation energy for reaction of 210 kJ/mol. In the absence of CO_2 , the activation energy of C_2 production falls to $105 \, \text{kJ/mol}$.

Keywords: Methane coupling; lithium-magnesium oxide; carbon dioxide inhibition

1. Introduction

Considerable research on the oxidative dimerization of methane has addressed the fundamental issues related to the reaction mechanism. However, controversy still exists regarding the active sites [1,2], the rate limiting step [3,4], the mechanism for CO_x formation [5,6] and the role of CO_2 in altering the reaction mechanism [7,8]. The elucidation of these issues is handicapped by the difficulties and limitations associated with probing this reaction at the required high temperatures (950–1050 K). Further improvements in existing catalysts or the discovery of significantly better catalysts will depend, to a large extent, upon the development of a comprehensive and detailed understanding of the catalytic material and the reaction mechanism.

Detailed kinetic studies have been performed on a few catalysts including Sr/La_2O_3 [9] and Li/MgO [10,11] from which generalized rate laws and mechanisms have been fashioned for each of these respective catalysts. A mechanism proposed for the lithium promoted magnesium oxide involves the dissociative chemisorption of oxygen,

$$O_2(g) + 2S + 2e \rightleftharpoons 2O_s^-, \tag{1}$$

¹ To whom correspondence should be addressed.

followed by a rate-limiting step for CH_4 activation on active O^- surface sites (O_s^-) ,

$$CH_4(g) + O_s^- \rightarrow CH_3(ads) + O_sH^-. \tag{2}$$

The methyl radicals formed in this step then either couple to form ethane

$$CH_3(ads) \rightarrow CH_3(g)$$
, (3)

$$2CH_3(g) \to C_2H_6, \tag{4}$$

or oxidize to form CO and CO₂,

$$CH_3(ads) \rightarrow CO, CO_2$$
. (5)

From this mechanism a rate law has been proposed for the formation of methyl radicals [9],

$$\frac{d(CH_3\cdot)}{dt} = \frac{k_2 K_1^{1/2} [O_2]^{1/2} [CH_4]}{1 + K_1^{1/2} [O_2]^{1/2}}.$$
 (6)

This picture is supported by pressure and temperature dependent studies obtained in the 1–100 mTorr (1 Torr = 133.3 kPa) pressure range [11]. In these low pressure experiments an activation energy of 88 kJ/mol was observed, in good agreement with the value of ~ 105 kJ/mol [12] calculated for hydrogen abstraction from methane on either LiO or a LiO(Mg₄O₅) cluster to form CH₃· radicals.

This mechanism proposed by Amorebieta and Colussi fails for higher reaction pressures (760 Torr) and for reactant mixtures that are not fuel rich ($CH_4/O_2 < 10$) [13]. For higher pressures and fuel deficient conditions, the activation energies increase with increasing total pressure and increasing O_2 concentrations. For Sr/La_2O_3 , Feng and Gutman [9] associate this increase in activation energy with an increase in the coverage of surface oxygen. The apparent activation energy observed was proposed to consist of an intrinsic component plus the activation energy for oxygen desorption [9].

Xu et al. [7] attribute the failure of Amorebieta's and Colussi's rate law to poisoning of the oxidative coupling reaction by CO_2 [7]. Carbon dioxide has been shown to block adsorption of the reactants thereby lowering the activity and altering the activation energy [8]. The revised rate equation includes $K_{CO_2}[CO_2]$ in the denominator of eq. (6) with the apparent activation energy given as

$$E_{\rm a} = E_{\rm i} + \Delta H_{\rm CO_2} \,, \tag{7}$$

where E_i is the intrinsic activation energy of reaction and $\Delta H_{\rm CO_2}$ is the activation energy for desorption of $\rm CO_2$.

Thin-film Li/MgO catalysts have been shown to be excellent models of the high surface area powders used in the oxidative dimerization reaction [14]. Agreement between the turnover frequencies and activation energies of the thin-film and powder MgO and Li/MgO catalysts indicates that the adsorptive and catalytic

properties of the thin-film models reproduce those of the powders. The utilization of thin-film catalysts allows the use of an array of surface science techniques to investigate these materials. For example, recent studies of the oxidative coupling of methane over thin-film MgO and Li-promoted MgO have provided information about the active sites that could not have been obtained on the bulk catalysts [1]. A correlation between C₂ production and the presence of F-type defects (oxygen vacancies containing two electrons) on the Li/MgO thin-film catalyst indicates that the active sites for this reaction are likely F centers in the near-surface region.

In this article, the effects of CO_2 partial pressure and reaction temperature for the oxidative coupling of methane on model Li/MgO thin films (10 wt% Li, ~ 20 Å) are reported. The results indicate that the coupling reaction can be carried out in the absence of gas-phase oxygen subsequent to pretreatment of the catalyst in oxygen at 1200 K. Carbon dioxide desorption is shown to be the rate-determining step at high CO_2 partial pressures, with the apparent activation energy of reaction markedly decreasing as the partial pressure of CO_2 is lowered.

2. Experimental

The experiments were carried out on a combined UHV/reactor cell system equipped with Auger electron spectroscopy (AES), temperature programmed desorption (TPD) and dosing capabilities for both gases and metals. The catalyst could be transferred via a double-stage differentially pumped sliding seal from the UHV chamber $(1.0 \times 10^{-10} \text{ Torr})$ to a static reactor capable of reaction pressures up to 1000 Torr. All reaction products were analyzed with gas chromatography (GC) utilizing flame ionization detection and a methanizer for CO_x detection. A detailed description of the apparatus can be found elsewhere [15].

The thin-film Li/MgO catalyst was prepared by co-depositing Li and Mg onto a Pt(100) single crystal at room temperature in a background (5.0×10^{-7} Torr) of oxygen. Magnesium deposition was achieved using thermal evaporation from a high purity Mg ribbon wrapped around a tungsten filament. Lithium was deposited onto the surface using a SAES GETTERS source. The dosers were mounted 1.3 cm apart and were 2.5 cm from the sample during dosing. The metal flux was monitored with a mass spectrometer mounted 5 cm from the sources. The evaporation rate of each metal was determined by a combination of TPD and AES measurements; the procedure is described in detail elsewhere [16].

Following preparation and characterization in the UHV chamber, the ~ 20 Å thin-film Li/MgO catalyst was transferred to the reaction cell for activation. The activation process consisted of heating to 1200 K in 1–10 Torr of oxygen for 1–10 min. Subsequently the sample was retracted into the UHV chamber for post-activation analysis using AES.

Catalytic experiments were run in the reactor at temperatures ranging from 950 to 1010 K and total pressures of 1 to 25 Torr. The temperature dependent experi-

ments were typically run at a $CH_4: O_2$ ratio of 10 with a total pressure of 11 Torr. For the CO_2 experiments a $CH_4: O_2$ ratio of 10 was used. All reactions were carried out with conversions of less than 1% methane; ethane, CO and CO_2 were the major products.

Surface analysis with AES utilized the prominent Mg^{2+} ($L_{23}VV$) transition at 32.0 eV and the O^{2-} (KLL) transition at 505.0 eV. Interference from the Li⁺ (KLL) transition was taken into account as described by Wu et al. [16]. The TPD studies were carried out with a shielded mass spectrometer to eliminate interference from background desorption processes. Typical heating rates were 5 K/s with a heating range of 300–1300 K.

3. Results

Fig. 1 shows the results of a series of reactions with methane (20 Torr) as the only reactant following activation of the Li/MgO catalyst in 1 Torr of O_2 at 1200 K. The selectivity of the catalyst as a function of reaction time is displayed. An initial increase in the C_2 selectivity was observed during the first few minutes, after which the rate remained essentially constant. A significant shift from CO_2 to C_2 as the dominate product in the absence of oxygen is apparent; however, it should be noted that the methane conversion in all cases was <1%. The CO_2 product concentration, although relatively low, was not zero. AES post-reaction analysis indicated no carbon accumulation on the surface and a small decrease in the oxygen concentration with reaction time. For catalysts with no oxygen pretreatment, no

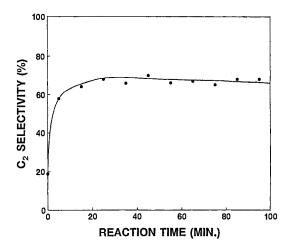


Fig. 1. C₂ to CO₂ selectivity in the absence of oxygen as a function of reaction time following catalyst activation at 1200 K for 5 min in 2 Torr O₂. Reactions were carried out at 990 K in 20 Torr of methane.

C₂ products were detected, and no changes were indicated by AES in the catalyst surface with reaction time.

An Arrhenius plot of C_2 production at pseudo-steady-state (40–80 min) in the absence of oxygen is shown in fig. 2. The activation energy of fig. 2 corresponds to 140 kJ, considerably lower than the 210 kJ reported for a CH_4 : O_2 ratio of 4 at a comparable total pressure over this catalyst [14]. At 990 K in an oxygen-free environment, the C_2 turnover frequency (TOF) is 1.4×10^{-2} molecules/site s (site $\approx 10^{17}/\text{cm}^2$). The TOF recorded in the absence of oxygen is somewhat higher than the value (9.0 \times 10⁻³ molecules/site s) observed for a CH_4/O_2 ratio of 4 [14].

As discussed above, the partial pressure of CO₂ plays a key role in altering the catalyst and the reaction mechanism. One of the effects of carbon dioxide is to stabilize the lithium on the MgO surface as shown in fig. 3. The TPD spectrum for lithium deposited in a CO₂-free environment (fig. 3a) has a desorption maximum at 700 K whereas the desorption spectrum obtained following lithium deposition in a CO₂ background (fig. 3b) exhibits a maximum at 1050 K with a shoulder at 875 K. Xu et al. [7] have identified this stable form of Li as a Li₂CO₃ phase that is modified by MgO.

 CO_2 desorption from Li/MgO following a saturation exposure of CO_2 is shown in fig. 4. The desorbing CO_2 (mass 44) follows in concert the Li desorption observed in fig. 3b. A kinetic analysis of the TPD profile suggests an activation energy of 240 kJ for CO_2 desorption from the 875 K feature. The similarities in the activation energies for the desorption of CO_2 from this 875 K feature and the oxidative coupling reaction with significant CO_2 pressure (~ 210 kJ) strongly suggest that desorption of CO_2 from this particular adsorbed species is the rate-limiting step under these reaction conditions.

To directly address the role of CO₂ in altering the available reactive sites at the

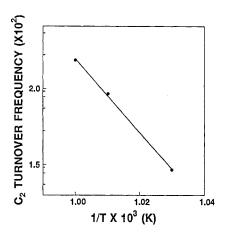
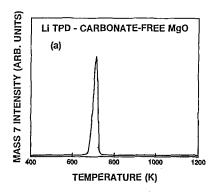



Fig. 2. A plot of the turnover frequency versus inverse reaction temperature for methane coupling (20 Torr methane) in the absence of gas-phase oxygen following pretreatment of the catalyst in 2.0 Torr O₂ at 1200 K. The apparent activation energy is 140 kJ/mol.

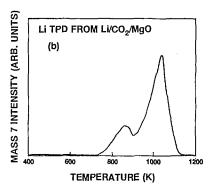


Fig. 3. (a) Temperature programmed desorption spectrum of lithium (mass 7) on MgO. (b) Temperature programmed desorption spectrum of lithium (mass 7) from MgO subsequent to deposition in a background of carbon dioxide.

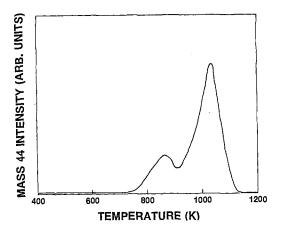


Fig. 4. Temperature programmed desorption spectrum of CO₂ (mass 44) from Li/MgO.

Li/MgO surface, the reaction was carried out in a CO_2 -free environment. This was made possible by immersing the reactor cell in a liquid N_2 bath. At 77 K, the C_2 and CO_2 products were immediately adsorbed onto the walls of the reactor, thus maintaining their partial pressures in the reaction mixture essentially at zero. An Arrhenius plot of the C_2 production in the cold wall reactor, displayed in fig. 5, yields an apparent activation energy of 105 kJ. This value likely corresponds to the intrinsic activation energy of the hydrogen abstraction step *plus* the activation energy for the active site formation. The active site as discussed in ref. [1], is believed to be an F-type defect center.

The effect of CO_2 partial pressure on the C_2 production is shown in fig. 6. The C_2 formation rate falls rapidly with an increase in the partial pressure of CO_2 as low as 0.5 Torr. These results are in agreement with the earlier results of Korf et al. [8], and the more recent results of Xu et al. [7], where CO_2 was found to inhibit the production of C_2 as well as methyl radical formation. For all concentrations of CO_2 the apparent activation energy for reaction was $200-225 \, \text{kJ/mol}$.

4. Discussion

Carbon dioxide effects on the Li/MgO catalyst appear to be twofold. First, it stabilizes the lithium promoter as shown in fig. 3. Secondly, however, CO₂ in the form of a carbonate or carbonate-like species inhibits the reaction as seen in fig. 6. The similarities between the activation energy of desorption of the 875 K species of fig. 4 and the activation energy of the dimerization reaction with high concentrations of CO₂ suggest a dominant inhibiting effect. These results are consistent with the rate-limiting step for the coupling reaction in the presence of high concentrations of CO₂ being the desorption of CO₂. CO₂ desorption, in turn, frees an active site for the dissociative adsorption of methane.

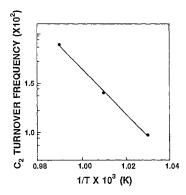


Fig. 5. An Arrhenius plot of C_2 production in a cold (77 K) wall reactor with $P_{CH_4} = 20$ Torr and $P_{O_2} = 1$ Torr. The apparent activation is 105 kJ/mol.

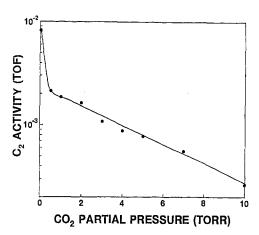


Fig. 6. C₂ production as a function of CO₂ partial pressure in the initial reactant mixture. P_{CH_4} = 10 Torr, P_{O_2} = 1 Torr and T = 990 K.

If CO₂ desorption under these conditions is the rate-limiting step, then the reduction in the activation energy observed for the cold wall reaction of fig. 5 can be explained by a significant shift in the CO₂ adsorption/desorption equilibrium. This shift yields a surface that is essentially free of adsorbed CO₂. Accordingly, the apparent activation energy under these conditions of 105 kJ is consistent with the rate-determining step having changed to the hydrogen abstraction step. This step has been shown to have an activation energy of ~ 90 kJ/mol on Li/MgO [11] and on Sr/La₂O₃ [9]. The cold wall reaction in this study can be compared to previous studies [17] at low pressure since in both cases the concentration of CO₂ is sufficiently low such that the surface coverage of CO₂ is negligible.

Reactions carried out with CO_2 in the reactant mixture clearly show that CO_2 adsorption must be incorporated into the reaction rate law. With increasing partial pressures of CO_2 , the C_2 production falls, consistent with an increase in the surface CO_2 coverage. The activation energy is invariant at approximately 210 kJ/mol, independent of the CO_2 partial pressure, as long as this pressure is > 0.5 Torr.

From the present results, it is evident that a realistic rate law of methane activation must incorporate competitive adsorption of CH_4 and CO_2 . The rate law proposed by Xu et al. [7], accounts for the pressure dependence in CO_2 by adding the adsorption equilibrium for CO_2 to the rate law (6) denominator

$$\frac{\mathrm{d}[\mathrm{CH}_3]}{\mathrm{d}t} = \frac{k_2[\mathrm{CH}_4]K_1^{1/2}[\mathrm{O}]_2^{1/2}}{1 + K_1^{1/2}[\mathrm{O}_2]^{1/2} + K_{\mathrm{CO}_2}[\mathrm{CO}_2]}.$$
 (8)

This rate law with respect to CO_2 is consistent with the results found in this study. Analysis of the rate law (8) with the inclusion of the CO_2 term is informative. For the reaction with oxygen, the concentration of CO_2 increases with an increase in the methane conversion, thus shifting the rate limiting step from C-H bond cleavage to CO_2 desorption. Removal of gas-phase oxygen clearly improves the C_2 yield of the oxidative dimerization reaction, suggesting that cycling the catalyst in oxygen at high temperatures to generate active sites followed by a second step in which the pretreated catalyst is reacted with methane, could maximize the C_2 selectivity. Work is currently in progress to explore this reaction sequence.

5. Conclusions

The dependence of the oxidative coupling reaction on the partial pressures of carbon dioxide has shown that the rate-limiting step is dependent on the CO_2 coverages on the catalyst. At low CO_2 partial pressures the activation energy for the dimerization reaction indicates that the rate-limiting step is C-H bond cleavage. Under conditions of relatively high CO_2 partial pressures the rate-determining step is CO_2 desorption based upon the similarities between the desorption activation energy of CO_2 and the activation energy for C_2 formation.

Acknowledgement

We acknowledge with pleasure the support of this work by the Gas Research Institute.

References

- [1] M.C. Wu, C.M. Truong, K. Coulter and D.W. Goodman, J. Catal., in press.
- [2] D.J. Driscoll, W. Martir, J.X. Wang and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 58.
- [3] N.W. Cant, C.A. Lukey, P.F. Nelson and R.J. Tyler, J. Chem. Soc. Chem. Commun. (1988) 766.
- [4] A. Ekstrom and J.A. Lapszewicz, J. Phys. Chem. 93 (1989) 5230.
- [5] J.A. Roos, S.J. Korf, R.H.J. Veehof, J.G. Van Ommen and J.R.H. Ross, Appl. Catal. 52 (1989) 131.
- [6] A. Ekstrom and J.A. Lapszewiecz, J. Am. Chem. Soc. 111 (1989) 8515.
- [7] M. Xu, C. Shi, X. Yang, M.P. Rosynek and J.H. Lunsford, J. Catal., submitted.
- [8] S.J. Korf, J.A. Roos, N.A. deBruijn, J.G. Van Ommen and J.R.H. Ross, J. Chem. Soc. Chem. Commun. (1987) 1433.
- [9] Y. Feng, J. Niiranen and D.J. Gutman, J. Phys. Chem. 95 (1991) 6558; J. Phys. Chem. 95 (1991) 6564.
- [10] J.B. Kimble and J.H. Kolts, Energy Progress 6 (1986) 226.
- [11] V.T. Amorebieta and A.J. Colussi, J. Phys. Chem 92 (1988) 4576.
- [12] K.J. Børve and L.G.M. Petterson, J. Phys. Chem. 95 (1991) 7401.
- [13] T. Ito, J.X. Wang, C.-H. Lin and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 5062.

- [14] K. Coulter and D.W. Goodman, Catal. Lett. 16 (1992) 191.
- [15] J. Szanyi and D.W. Goodman, in preparation.
- [16] M.C. Wu, J.S. Corneille, C.A. Estrada, J.W. He and D.W. Goodman, Chem. Phys. Lett. 182 (1991) 472.
- [17] C. Mirodatos and G.A. Martin, *Proc. 9th Int. Congr. on Catalysis*, Vol. 2, Calgary 1988, eds. M.J. Phillips and M. Ternan (Chem. Inst. of Canada, Ottawa, 1988) p. 899.
- [18] C.-H. Lin, T. Ito, J.-X. Wang and J.H. Lunsford, J. Catal. 111 (1988) 302.