Oxidative coupling of methane over BaF₂-TiO₂ catalysts

Shuiqin Zhou, Xiaoping Zhou, Huilin Wan and K.R. Tsai Department of Chemistry, Xiamen University, Xiamen 361005, PR China

Received 27 January 1993; accepted 30 April 1993

The addition of F⁻ to Ba–Ti mixed oxide catalysts significantly improves the catalytic performances for the oxidative coupling of methane (MOC), which can achieve high C_2 yields at wide feed composition range and high GHSV. The effect is particularly marked for the BaF₂–TiO₂ catalysts containing more than 50 mol% BaF₂. The C_2 yield of 17% and the C_2 selectivity of >60% were achieved over these catalysts at 700°C. After being on stream for 31 h, the \geqslant 50 mol% BaF₂–TiO₂ catalysts showed only a 1–1.5% decrease in the C_2 yields. Results obtained by XRD show that various Ba–Ti oxyfluoride phases were formed due to the substitution of F⁻ to O²⁻.

Keywords: Methane oxidative coupling; barium-titanium oxides; oxyfluorides

1. Introduction

Most of the active catalysts for MOC are reducible metal oxides, rare earth metal oxides, or the oxides of alkali and alkaline earth metals [1-3]. Comparatively, the modification of anions in catalysts has not been studied widely. Lunsford et al. [4] pay particular attention to the Li-MgO catalysts promoted with Cl-, which exhibited good activity and selectivity for MOC. Due to the volatilization loss of alkali metal and chloride ions at high temperature, such catalysts suffer from deactivation in time. To overcome these disadvantages, it is significant to develop stable, active and selective catalysts for MOC at lower temperatures. Considering the similarity in size of F⁻ and O²⁻, the stronger electronegativity of F compared to O and the virtually isolating effect of F⁻ dispersed on the surface of catalysts for oxygen species, we select fluorides as anion modifier of the oxide catalysts for MOC. A series of alkaline earth oxides, rare earth oxides, transition metal oxide catalysts modified by fluorides have been developed in our laboratory, which showed good properties (activity, selectivity and stability) for MOC at lower temperature. The objective of the present work is to study the effect of fluoride promoter on the Ba-Ti mixed oxides and the relation of catalytic performances with the catalyst structure, and to examine the influences of reaction conditions.

2. Experimental

Catalysts were prepared by mechanical mixing BaF₂ or BaO with TiO₂ with a small amount of water. The catalyst paste was dried for 4 h at 120°C and calcined in air for 6 h at 900°C. The material was then crushed and sieved to 40–60 mesh.

The catalytic reactions were carried out in a fixed bed quartz reactor 5 mm i.d. with heated length of 20 cm. A typical set of operating conditions was as follows: atmospheric pressure, 0.2 ml catalyst loading, methane/oxygen ratio of 4, no inert gas for dilution, and flow rate of 50 ml/min. Effluent gases were analyzed by gas chromatograph (5A carbosieve column for O_2 , CO and GDX 502 column for CH_4 , C_2H_4 , C_2H_6 and CO_2) at room temperature.

XRD were recorded with a Rigaku D/max-RC diffractometer using Cu K_{α} radiation (40 kV, 30 mA).

3. Results and discussion

3.1. EFFECT OF FLUORIDE ON THE Ba-Ti MIXED OXIDES

Table 1 shows the catalytic performances of BaO–TiO₂ and BaF₂–TiO₂ catalysts for MOC. The substitution of part of F⁻ for O²⁻ resulted in a drastic increase of the methane conversion and C₂ selectivity. For the case of barium/titanium mole ratios of 1, 2 and 3, C₂ yields of 11.1, 17.1 and 16.6% were achieved over the BaF₂–TiO₂ system at 650, 700 and 720°C, respectively. Correspondingly, the BaO–TiO₂ mixed oxides only gained C₂ yields of 1.8 and 4.6% at identical conditions. All the data in tables 1 and 2 of BaF₂–TiO₂ catalysts were obtained over 20–40 h time-on-stream, but the data of BaO–TiO₂ catalysts were obtained over 3–9 h time-on-stream. The \geq 50 mol% BaF₂–TiO₂ catalysts showed only a 1–1.5% decrease of C₂ yields after 31 h on stream.

Table 1
Comparison of the oxidative coupling of methane over BaO-TiO ₂ and BaF ₂ -TiO ₂ catalysts

Ba/Ti	Catalyst	Temp. (C°)	CH ₄	Selectiv	C ₂				
			conv. (%)	C_2H_4	C_2H_6	СО	CO_2	C_2	yield (%)
1	BaO-TiO ₂	650	8.6	3.7	17.3	14.9	64.1	21.0	1.8
1	BaF ₂ -TiO ₂	650	20.9	26.4	26.5	5.7	41.4	52.9	11.1
2	BaO-TiO ₂	700	7.8	13.5	45.4	7.4	33.7	58.9	4.6
2	BaF ₂ -TiO ₂	700	28.1	36.7	24.0	7.7	31.7	60.7	17.1
3	BaO-TiO ₂	720	7.7	15.8	43.6	23.5	17.0	59.4	4.6
3	BaF ₂ -TiO ₂	720	27.3	34.3	26.5	9.3	29.8	60.8	16.6

3.2. EFFECT OF BaF₂ CONCENTRATION ON OXIDATIVE COUPLING OF METHANE OVER BaF₂-TiO₂ CATALYSTS

To investigate the effect of BaF₂ concentration on catalytic performances, the BaF₂–TiO₂ catalysts containing 0–100 mol% BaF₂ were examined. The variation of catalytic performances at 700°C with different BaF₂ concentration is shown in table 2. Pure TiO₂ and BaF₂ are rather inactive for MOC. When BaF₂ content was lower than 50%, the conversion of CH₄ and C₂ selectivity increased slowly with the increase of BaF₂ content, and the BaF₂–TiO₂ catalysts did not show high C₂ yields. After the BaF₂ content reached 60%, the catalytic activity and selectivity increased dramatically. The catalysts containing 60–75% BaF₂ exhibited C₂ yields of about 17% and C₂ selectivity of > 60%. Clearly, a new phase favorable to activating methane may be produced in these catalysts.

3.3. CATALYST STRUCTURE

The crystalline phases of the bulk of BaF₂-TiO₂ catalysts of various BaF₂ contents are shown in table 3. Due to the substitution of part of F⁻ for O²⁻, all BaF₂-TiO₂ systems produced Ba-Ti oxyfluorides. At the meantime, various Ba-Ti complex oxides with different structures existed in all BaO-TiO₂ or BaF₂-TiO₂ systems. Apparently, these Ba-Ti complex oxides were not very active for the selective oxidation of methane. When the BaF₂ content reached 20-50%, BaTiOF₄ phase was observed, which is likely to promote the C₂ yields of MOC limitedly and lower the activation temperature of methane. When the BaF₂ content reached over 60%, the orthorhombic Ba₃Ti₂O₂F₁₀ was observed. In fact, it is a distorted cubic structure (a = 10.32, b = 10.07, c = 9.70). All Ti⁴⁺ coordinated with 5F⁻ and O²⁻ averagely form the octahedral sharing two vertices. The coordination environments of three Ba²⁺ are different, with coordination numbers of 10, 10 + 3 and 11 + 2, respectively [5]. This special structure might be favorable to the activation

Table 2
Catalytic performances of BaF2-TiO2 catalysts with different BaF2 concentration at 700°C

Catalyst ^a	CH ₄ conv.	Selectivi	C ₂ yield				
	(70)	C ₂ H ₄	C ₂ H ₆	СО	CO ₂	C ₂	(%)
TiO ₂	1.9	0	13.7	49.5	36.8	13.7	0.3
20% BaF ₂ -TiO ₂	2.9	8.8	35.1	13.9	42.2	43.9	1.3
50% BaF ₂ -TiO ₂	21.3	25.4	23.8	7.0	43.8	49.2	10.5
60% BaF ₂ -TiO ₂	28.5	38.0	22.2	4.6	35.2	60.2	17.2
66.7% BaF ₂ -TiO ₂	28.1	36.7	24.0	7.7	31.7	60.7	17.1
75% BaF ₂ -TiO ₂ ^b	28.1	38.0	24.2	7.0	30.8	62.2	17.5
BaF_2	0	0	0	0	0	0	0

^a Composition is on mol% basis.

b Temperature = 750°C.

Table 3
Chemical species identified by XRD of series of catalysts

Catalyst	Identified species ^a
raw material	cubic BaF ₂ ; tetragonal anatase TiO ₂
20% BaF ₂ -TiO ₂	monoclinic BaTi ₅ O ₁₁ (s), BaTiO ₄ (m), BaTi ₂ O ₅ (w); BaTiOF ₄ (m);
	hexagonal BaTiO ₃ (m)
50% BaF ₂ -TiO ₂	BaTiOF ₄ (s); hexagonal BaTiO ₃ (w)
60-75% BaF ₂ -TiO ₂	cubic BaF ₂ (s); orthorhombic Ba ₃ Ti ₂ O ₂ F ₁₀ (m); tetragonal BaTiO ₃ (m)
50% BaO-TiO ₂	tetragonal BaTiO ₃ (s)
66.7% BaO-TiO ₂	orthorhombic Ba ₂ TiO ₄ (s); monoclinic Ba ₂ TiO ₄ (m);
	tetragonal BaTiO ₃ (m)
75% BaO-TiO ₂	monoclinic Ba ₂ TiO ₄ (s); orthorhombic Ba ₂ TiO ₄ (s); tetragonal BaO (w)

a s: strong; m: medium; w: weak.

of methane, so the BaF_2 - TiO_2 catalysts containing over 60% BaF_2 gained good C_2 selectivity and C_2 yields.

3.4. INFLUENCES OF REACTION FACTORS ON CATALYTIC PERFORMANCES

Table 4 gives the catalytic performances in methane/oxygen ratio of 1.8-7.9 over 75% BaF₂-TiO₂ catalyst. An increase in methane/oxygen ratio resulted in a decrease of the conversion of CH₄ (from 44.4 to 17.5%) and an increase of the C₂ selectivity (from 41.6 to 78%). The ratio of C₂H₄ to C₂H₆ also decreased with the increase of methane/oxygen ratio, indicating that there was a higher rate of oxidative dehydrogenation of C₂H₆ to C₂H₄ at higher oxygen concentration.

The effect of the variation of GHSV at 750° C is also given in table 4. When GHSV increased from 5000 to 10000 h⁻¹, both the conversion of CH₄ and the C₂ selectivity increased. At GHSV ranging from 10000 to 20000 h⁻¹, the conversion of

Table 4 Influence of reaction conditions on the catalytic performances over 75% BaF_2 - TiO_2 catalyst at 750°C

CH ₄ /O ₂	GHSV (h ⁻¹)	CH ₄ conv. (%)	Selectivi	C ₂ yield				
			C_2H_4	C ₂ H ₆	СО	CO ₂	C ₂	(%)
1.8	15000	44.4	30.3	11.3	8.8	49.6	41.6	18.5
2.8	15000	33.8	36.7	16.6	6.3	40.3	53.3	18.0
3.9	15000	27.4	39.5	22.8	4.4	33.3	62.3	17.1
5.0	15000	23.4	40.4	27.8	3.7	28.0	68.2	16.0
7.9	15000	17.5	38.3	39.7	2.2	19.8	78.0	13.7
3.0	5000	30.3	31.6	14.2	11.8	42.4	45.8	13.9
3.0	10000	33.0	40.0	17.1	6.9	35.9	57.1	18.8
3.0	20000	33.7	39.2	16.5	8.4	35.9	55.7	18.8
3.0	30000	10.9	24.0	45.9	0	30.1	69.9	7.6

CH₄ and the C₂ selectivity are almost invariable and the best C₂ yield of 18.8% was obtained. When GHSV reached $30000 \, h^{-1}$, the C₂ selectivity increased, but the conversion of CH₄ and C₂ yields decreased dramatically. Viewing the effect of GHSV as a whole, the 75% BaF₂-TiO₂ catalyst can convert CH₄ to C₂ hydrocarbon effectively at higher GHSV.

4. Conclusions

The improved catalytic performances of Ba–Ti mixed oxides for MOC can be achieved by addition of F^- . The promotion of fluorides for Ba F_2 –TiO $_2$ catalysts containing over 60 mol% Ba F_2 is especially remarkable because the orthorhombic Ba $_3$ Ti $_2$ O $_2$ F $_{10}$ phase is formed, which may be responsible for the good catalytic properties for MOC. These catalysts containing Ba $_3$ Ti $_2$ O $_2$ F $_{10}$ can activate and convert methane to C $_2$ hydrocarbon effectively at wider range of methane/oxygen and higher GHSV.

References

- [1] T. Ito, J.X. Wang, C.H. Lin and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 5062.
- [2] B. Yingli, Z. Kaiji et al., Appl. Catal. 39 (1988) 185.
- [3] Z. Kalenik and E.E. Wolf, in: *Natural Gas Conversion*, Studies in Surface Science and Catalysis, Vol. 61, eds. A. Holmen, K.-J. Jens and S. Kolboe (Elsevier, Amsterdam, 1991) p. 97.
- [4] S.J. Conway, J.H. Lunsford et al., Appl. Catal. 79 (1991) L1–L5.
- [5] R. Domesle and Hoppe, Z. Anorg. Allg. Chem. 495 (1982) 27.