Role of support in reforming of CH₄ with CO₂ over Rh catalysts

Junji Nakamura, Keita Aikawa, Koichi Sato and Toshio Uchijima Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Received 13 October 1993; accepted 11 January 1994

The reforming of CH₄ with CO₂ over supported Rh catalysts has been studied over a range of temperatures (550–1000 K). A significant effect of the support on the catalytic activity was observed, where the order was Rh/Al₂O₃ > Rh/TiO₂ > Rh/SiO₂. The catalytic activity of Rh/SiO₂ was promoted markedly by physical mixing of Rh/SiO₂ with metal oxides such as Al₂O₃, TiO₂, and MgO, indicating a synergetic effect. The role of the metal oxides used as the support and the physical mixture may be ascribed to the promotion in dissociation of CO₂ on the surface of Rh, since the CH₄ + CO₂ reaction is first order in the pressure of CO₂, suggesting that CO₂ dissociation is the rate-determining step. The possible model of the synergetic effect was proposed.

Keywords: CO₂ reforming of CH₄; supported Rh catalyst; support effect; CO₂ activation

1. Introduction

Great attention has been paid to the reforming of CH_4 with CO_2 ($CH_4 + CO_2$) \rightarrow 2CO + 2H₂ 59.1 kcal/mol) on account of the following two backgrounds. Firstly, the reaction is a promising process as an alternative route to synthesis gas [1-8]. The industrial interest in the $CH_4 + CO_2$ reaction is related to the CO/H_2 ratio of unity which is less than that obtained by steam reforming of CH₄. In fact, the CO₂ reforming has been used in conjunction with steam reforming by addition of CO_2 to the feed gas to obtain a suitable $H_2/(CO + CO_2)$ ratio for a hydrogenation of CO such as methanol synthesis. Secondly, the CH₄ + CO₂ reaction has been investigated from a viewpoint of energy transfer or storage by use of the great heat of reaction and the reversibility between the forward and the reverse reaction [9-11]. In the Eva-Adam process operated in Germany, steam reforming of CH₄ is adopted for the energy transfer. The products of CO/H₂ are transported to remote sites where the reverse reaction, $CO + 3H_2 \rightarrow CH_4 + H_2O$, is performed. and then CH₄ is sent back after removing H₂O from the product mixture. The advantages of the $CH_4 + CO_2$ reaction in the application to the heat transfer are due to the heat of reaction (59.1 kcal/mol) which is higher than that of steam

reforming of CH₄ (49.3 kcal/mol) and to the fact that no liquid products that need excess energy for vaporization are formed.

Most of the group VIII metals (Rh, Ru, Ni, Pd, Pt, Ir, Co, Fe) except Os are known to catalyze more or less the $CH_4 + CO_2$ reaction. The serious problem is deactivation of the catalyst by carbon deposition on the surface of the catalyst and the subject of worldwide research interest is currently to develop catalysts which can efficiently conduct the CO_2 reforming without coking. The conventional Nibased steam reforming catalysts tend to be coked due to the formation of stable nickel carbide on the surface of Ni catalysts [3]. Among the metals having catalytic activity, Rh is a superior component in respect of the high activity and the coking-free nature. The combination of metal and support also influences the catalytic activity as well as the extent of carbon deposition, where Al_2O_3 is an excellent support for Pd and Pt catalysts while MgO is suitable for Ni catalysts. In this paper, we report the support effect of Rh catalysts for the $CH_4 + CO_2$ reaction and propose a model for the role of the support played in the activation of CO_2 .

2. Experimental

The supports used here were Al_2O_3 (JRC-ALO4), SiO_2 (JRC-SIO7), and TiO_2 (JRC-TiO4) supplied by the Catalyst Society of Japan and MgO manufactured by Wako pure chemical industries, Ltd, and calcined at 1073-1173 K before preparation of catalysts. The supported catalysts with 0.5 wt% loading of Rh were prepared by an impregnation method using rhodium chlorides. The catalysts were dried at 383 K for ca. 2 h and calcined at 723 K for 3 h in air. Prior to the reaction, the catalysts were reduced with H_2 at 773 K for 1 h in a flow reactor. The reforming of CH_4 with CO_2 was conducted using mixtures of CH_4 : CO_2 : CO_3 : CO_4

3. Results and discussion

The reaction of CH₄ with CO₂ was carried out over Rh/Al₂O₃, Rh/SiO₂, and Rh/TiO₂ between 600 and 1100 K. The results of the reaction at 893 K for these catalysts and the dispersions of Rh are summarized in table 1. The conversion of CH₄ and CO₂ and the reaction rate on the basis of the unit 10^{-4} mol/s g clearly indicate the significant effect of the support on the catalytic activity where its order of supports was Al₂O₃ > TiO₂ > SiO₂ and Rh/Al₂O₃ was 18 times more active than

Table 1

	Dispersion ^a	Conversion b		Yield ^b			Reaction rate c	
		CH ₄ (%)	CO ₂ (%)	H ₂ (%)	CO (%)	H ₂ /CO ratio	10 ⁻⁴ mol /s g	TOF
Rh/Al ₂ O ₃	0.514	83.8	85.7	66.2	78.3	0.85	632	25.5
Rh/TiO ₂	0.068	88.7	88.2	80.7	82.4	0.98	123	37.5
Rh/SiO ₂	0.121	5.8	5.1	4.4	5.4	0.81	35.7	6.1

^a The dispersions were determined using post-reaction catalysts.

Rh/SiO₂ at 893 K. The activities were also compared by turnover frequency (TOF) for CH₄ conversion considering the dispersion of Rh particles, and the order of activity was found to be $TiO_2 > Al_2O_3 > SiO_2$, where Rh/TiO₂ was 6 times more active than Rh/SiO₂ at 893 K. Arrhenius plots of the TOF for these three catalysts are shown in fig. 1. The activation energies for Rh/TiO₂, Rh/Al₂O₃, and Rh/SiO₂ were given as 15, 21 and 20 kcal/mol, respectively.

The significant effect of support may be due to a direct activation of CH_4 or CO_2 by metal oxides used as support. Another possibility of the support effect is related to the difference of particle size of Rh, since a so-called "structure sensitive" reaction is influenced by dispersion of metal on the support. To evaluate the role of the support, the $CH_4 + CO_2$ reaction was performed over Rh/SiO₂ catalysts mixed physically with metal oxides such as Al_2O_3 , TiO_2 , and MgO. Fig. 2 shows

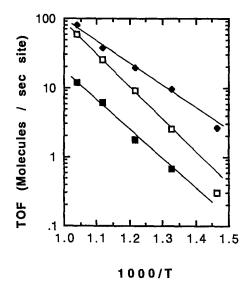


Fig. 1. Arrhenius plots of turnover frequency (TOF) for CH₄ conversion over (\spadesuit) Rh/TiO₂, (\Box) Rh/Al₂O₃, and (\blacksquare) Rh/SiO₂.

^b Catalyst weight, 10 mg; reaction temperature, 893 K.

^c The rates were determined by changing W/F value.

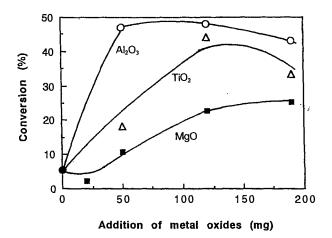


Fig. 2. Effect of metal oxides mixed with Rh/SiO₂ on conversion of CH₄. Reaction temperature is 893 K. Rh/SiO₂ (10 mg) + metal oxide (x mg)+SiO₂(190 - x mg). Total amount of the mixtures is 200 mg. (\bigcirc) Al₂O₃, (\triangle) TiO₂, (\blacksquare) MgO, (\bullet) none.

the conversions of CH_4 at 893 K as a function of the amount of metal oxides mixed with 10 mg of Rh/SiO_2 . The equilibrium conversion is 84.9% under this reaction condition. It is clear from the results in fig. 2 that each of the metal oxides, Al_2O_3 , TiO_2 , and MgO, promotes the catalytic activity of Rh/SiO_2 remarkably. Although the addition of Al_2O_3 promoted the catalytic activity of Rh/SiO_2 by an order of magnitude, no activity of Al_2O_3 alone was observed for the $CH_4 + CO_2$ reaction. This indicates a synergetic effect of Rh metal and metal oxide on the catalytic activity for the $CH_4 + CO_2$ reaction.

In order to clarify which molecule, CH₄ or CO₂, is activated by the mixing of metal oxides with Rh/SiO₂, it is necessary to get information on the rate determining step of the $CH_4 + CO_2$ reaction. We hereby examined the dependence of TOF over Rh/SiO₂ at 823 K on the pressures of CO₂ and CH₄ which were varied between 26 and 130 Torr. As shown in fig. 3, the reaction was found to be 1.0 order in CO₂ and -0.6 order in CH₄. The rise of CH₄ pressure leads to a decrease of reaction rate for the CH₄ + CO₂ reaction. This suggests that dissociation of CO₂ on Rh/SiO₂ is the rate-limiting step and proceeds faster than dissociation of CH₄, which is consistent with the results of surface science studies on dissociation of CO₂ and CH₄ over Rh surface. It is known that CH₄ dissociates easily on Rh surface [12,13], while the dissociation of CO₂ is a slow step [14,15]. The dissociation probabilities of CH₄ and CO₂ at 823 K are estimated to 1×10^{-4} and 2×10^{-5} , respectively, which are calculated from the data measured by Ehrlich [13] and Goodman [14]. It is concluded from the results of the pressure dependences that the role of metal oxides such as Al₂O₃, TiO₂, and MgO for the promotion of the activity of Rh/SiO₂ shown in fig. 2 is ascribed to the activation of a CO₂ related step.

It is known that CO₂ can adsorb on the surface of Al₂O₃, TiO₂, and MgO above room temperature as carbonate or formate in the presence of hydrogen. The carbo-

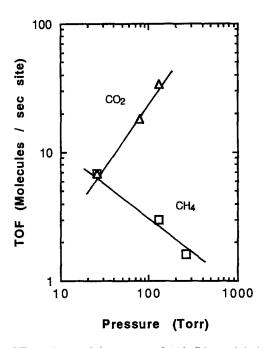


Fig. 3. Dependence of TOF on the partial pressure of (\triangle) CO₂ and (\square) CH₄ in the CH₄ + CO₂ reaction over Rh/SiO₂ at 893 K. The constant pressure of CH₄ or CO₂ is 26 Torr. The TOF values for the CH₄ and CO₂ pressure dependence are calculated from CO yield and CH₄ conversion, respectively.

nates on Al₂O₃ [16], TiO₂ [17], and MgO [18] decompose in vacuum at 350, 420, and 580 K, respectively. As for formate [19] on Al₂O₃, TiO₂, and MgO, the peak tops of temperature programmed desorption for CO₂ are 650, 540, 730 K, respectively, which are higher than the decomposition temperature of carbonate. We have confirmed the formation of formate on Al₂O₃ during the reaction of CO₂ and H₂, the reverse water-gas shift (RWGS) reaction, over the catalyst Rh/SiO₂ + Al₂O₃ using in situ FT IR. No carbonate or formate, however, is formed on SiO₂ [20] which is the only metal oxide that has no promotional effect for the $CH_4 + CO_2$ reaction in this study, suggesting that formation of carbonate or formate may be responsible for the enhancement of the reaction rate shown in fig. 2. Since the formate on Al₂O₃ is known to be intermediate species for the RWGS reaction [21], H₂O should be formed on Al₂O₃ by the RWGS reaction during the $CH_4 + CO_2$ reaction. We have also reported that TOF for steam reforming of CH_4 is greater than that for the $CH_4 + CO_2$ reaction by a factor of 6 at 823 K [22]. Thus, we tentatively propose a mechanism for the role of metal oxide where a part of CO2 is once converted to H2O by the RWGS reaction via formate intermediates over Al₂O₃ and the H₂O then reacts with CH₄ to form CO and H₂ over Rh. The formate on Al₂O₃ may be produced by either the reaction between hydrogen splitover from Rh onto Al₂O₃ and CO₂ on Al₂O₃ or the spillover of formate from Rh onto Al₂O₃ [23]. We will report in more detail on this mechanism elsewhere.

Solymosi et al. [6] reported the CO_2 pressure dependence in the $CH_4 + CO_2$ reaction over supported Rh catalysts and the support effect on the catalytic activity. The dependence of the rates for CO and H_2 formations on the pressure of CO_2 were 0.23 and 0.31, respectively, which were lower than the value in our case. Furthermore, no significant support effect was observed in the reaction of $CH_4 + CO_2$ over supported Rh catalysts, Rh/Al_2O_3 , Rh/TiO_2 , and Rh/SiO_2 . The different results from ours on the pressure dependence and the support effect is probably due to the pressure condition that the CO_2 and CH_4 reaction is performed at atmospheric pressure in their experiment, while each pressure of CO_2 and CH_4 is 26 Torr in this study. The different feature of the pressure dependence at 26 Torr and atmospheric pressure suggests that the kinetic balance for CO_2 and CH_4 dissociation and RWGS reaction is changed at the pressure region.

References

- [1] T. Sodesawa, A. Dobashi and F. Nozaki, React. Kinet. Catal. Lett. 12 (1979) 107.
- [2] Y. Sakai, H. Saito, T. Sodesawa and F. Nozaki, React. Kinet. Catal. Lett. 24 (1984) 253.
- [3] A.M. Gadalla and B. Bower, Chem. Eng. Sci. 43 (1988) 3049.
- [4] A.M. Gadalla and Sommer, Chem. Eng. Sci. 44 (1988) 2825; J. Am. Ceram. Soc. 72 (1989) 683.
- [5] F. Solymosi, Gy. Kutsán and A. Erdöhelyi, Catal. Lett. 11 (1991) 149.
- [6] A. Erdöhelyi, J. Cserényi and F. Solymosi, J. Catal. 141 (1993) 287.
- [7] M. Masai, H. Kado, A. Miyake, S. Nishiyama and S. Tsuruya, Stud. Surf. Sci. Catal. 36 (1988) 67.
- [8] J. Nakamura, S. Umeda, K. Kubushiro and K. Kunimori, Sekiyu Gakkaishi 36 (1993) 97.
- [9] O. Tokunaga, Y. Osada and S. Ogasawara, Fuel 68 (1989) 990.
- [10] J.S.H.Q. Perera, J.W. Couves, G. Sankar and J.M. Thomas, Catal. Lett. 11 (1991) 219.
- [11] J.T. Richardson and S.A. Paripatyadar, Appl. Catal. 61 (1990) 293.
- [12] A. Frennet, Catal. Rev.-Sci. Eng. 10 (1974) 37.
- [13] S.G. Brass and G. Ehrlich, Surf. Sci. 187 (1987) 21.
- [14] D.W. Goodman, D.E. Peebles and J.M. White, Surf. Sci. 140 (1984) L239.
- [15] W.H. Weinberg, Surf. Sci. 128 (1983) L224.
- [16] Unpublished data.
- [17] F. Solymosi, A. Erdöhelyi and T. Bánsági, J. Chem. Soc. Faraday Trans. I 77 (1981).
- [18] T. Kanno, S. Matoba, F. Yamazaki and M. Kobayashi, Shokubai 34 (1992) 395.
- [19] F. Solymosi and A. Erdöhelyi, J. Catal. 91 (1985) 327.
- [20] F. Solymosi and H. Knözinger, J. Catal. 122 (1990) 166.
- [21] Y. Amenomiya, J. Catal. 57 (1979) 64.
- [22] J. Nakamura, K. Sato, K. Aikawa, K. Kunimori and T. Uchijima, Shokubai (Catalysis) 35 (1993) 84.
- [23] F. Solymosi, A. Erdöhelyi and M. Kocsis, J. Catal. 65 (1980) 428.