Formation of the rhodium oxides Rh₂O₃ and RhO₂ in Rh/NaY

V. Schünemann, B. Adelman and W.M.H. Sachtler

V.N. Ipatieff Laboratory, Center for Catalysis and Surface Science,
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA

Received 10 February 1994; accepted 1 June 1994

The oxidation states of Rh in NaY supported catalysts have been studied by temperature programmed reduction (TPR). After calcination of the exchanged catalyst to 380° C, both RhO₂ and Rh₂O₃ are identified, besides small amounts of RhO⁺ and Rh³⁺. Quantitative reduction is possible for samples calcined at temperatures not exceeding 500° C. Re-oxidation of the reduced samples leads to formation of RhO₂ and Rh₂O₃, with negligible protonolysis to Rh³⁺. The dioxide prevails after re-oxidation at 320° C, but the sesquioxide after oxidation at 500° C. In the temperature regime where both oxides coexist the reduction of NO with propane is catalyzed even at an O_2/C_3H_8 ratio of 10. Total oxidation of propane reaches 80% at 350° C.

Keywords: rhodium oxides in NaY; temperature programmed reduction; NO_x reduction

1. Introduction

The propensity of rhodium to catalyze numerous important reactions, including hydrogenation and hydroformylation of olefins [1,2], conversion of synthesis gas to hydrocarbons and oxygenates [3], and reduction of nitric oxide with carbon monoxide [4], has motivated much research of Rh on a variety of supports. The majority of that work identified dispersion and structure of Rh under reducing conditions, while the oxidation of Rh⁰ to Rh⁺ by protons, in particular in the presence of CO, also received considerable attention [5]. Under oxidizing conditions the formation of Rhⁿ⁺ and [RhO]⁺ ions [6] and of the sesquioxide Rh₂O₃ [7–9] has been reported; also RhO has been identified [10]. It is surprising, however, that little mention is made in the catalytic literature of supported rhodium dioxide, RhO₂ [7], although the phase diagram of Rh–O₂ shows that in macroscopic systems this is the most stable compound over a wide range of O₂ pressures and temperatures [11].

In this paper we report on observations of both oxides, Rh₂O₃ and RhO₂, on a

zeolite support. These samples were tested as catalysts using the reduction of nitric oxide with propane as the catalytic probe [12,13].

2. Experimental

2.1. CATALYST PREPARATION

Ion exchange was performed by dropwise addition of a solution of 0.86 g $[Rh(NH_3)_5Cl]Cl_2$ in doubly deionized water to a slurry of 10 g NaY from Linde in 2000 ml H_2O at 80°C under air over a period of 4 days. This was followed by washing with water until the obtained solution was chlorine-free. Under these conditions ligand exchange transforms $[Rh(NH_3)_5Cl]^{2+}$ ions to $[Rh(NH_3)_5(H_2O)]^{3+}$ ions [5]. The ion exchanged sample was dried at 120°C in air and calcined in an oxygen flow (2000 ml/g min) up to 380°C with a ramp of 0.5°C/min, followed by calcination at this temperature for 6 h. The flow was switched to Ar for 20 min and the catalyst was cooled while in the Ar flow. ICP elemental analysis showed a metal load of 3.1 wt% Rh.

2.2. TEMPERATURE PROGRAMMED REDUCTION AND OXIDATION CYCLES

After ion exchange and calcination the samples were reduced in H_2 by temperature programmed reduction (TPR) as described previously [14]. The temperature program was stopped when 500°C was reached. Following a TPR run, the sample was cooled in H_2/Ar and the flow was switched to Ar (30 ml/min) at room temperature. The hydrogen consumption was obtained by integrating the TPR profiles versus time, to achieve optimum base line corrections. These curves are reproducible within 5%; they are not shown here. The experimental error in the hydrogen consumption is $\pm 5\%$. Subsequent re-oxidation was always preceded by cooling to -80°C, in order to prevent particle agglomeration upon first exposure to oxygen. After switching the gas flow to pure O_2 at 1 bar and a flow rate of 2000 ml/g min, the following reoxidation–reduction cycles were carried out:

- (1) Re-oxidation up to 380°C, hold for 6 h, switch to Ar at 380°C for 20 min, 2nd TPR.
- (2) Re-oxidation up to 500°C, hold for 2 h, switch to Ar at 500°C for 20 min, 3rd TPR.
- (3) Re-oxidation up to 320°C, hold for 1 h, cool in O₂ flow, switch to Ar at 20°C for 1 h, 4th TPR.

2.3. REDUCTION OF NO WITH PROPANE

In the steady state plug flow mode, catalytic measurements were made using a pyrex reactor charged with 200 mg Rh/NaY zeolite on a porous frit. After ion

exchange, calcination up to 380°C and reduction to 500°C, the catalyst was reoxidized up to 320°C. After pretreatment, the catalyst was heated from 20 to 300°C at 3°C/min in 30 ml/min He. Reaction studies were conducted with the inlet concentrations of 1000 ppm NO, 1000 ppm C_3H_8 , 10000 ppm O_2 , and He balance with a total flow of 200 ml/min. Reaction products were monitored by gas chromatography with molecular sieve 13X and Porapak Q columns (Alltech). Reaction temperature was held for 60 min then raised in 25°C intervals until 425°C. N_2 formation was used to calculate NO_x conversion. As CO formation was negligible, the evolution of CO_2 was used to calculate C_3H_8 conversion.

3. Results and discussion

The TPR profile of the sample after calcination to 380°C is shown in fig. 1a. The spectrum exhibits three hydrogen consumption peaks. Beside the most prominent peak centered at 40°C a shoulder at 150°C and a broad peak around 350°C are present.

On the basis of the reoxidation experiments we assign the dominant peak around 40°C to the reduction of rhodium oxide particles; the state of these will be discussed below. Reduction temperatures around 50°C for highly dispersed rhodium on Al₂O₃ have been observed [15]. Even reduction at room temperature for graphite-supported FeRh catalysts has been reported [16]. It was shown that such particles are formed in Rh/NaY during calcination by the sequence of autoreduction to Rh⁰ followed by oxidation of Rh⁰ to Rh oxide [6]. The ammine ligands of the [Rh(NH₃)₅H₂O]³⁺ ions or their decomposition products are responsible for the autoreduction. At a calcination temperature of 500°C rhodium oxide particles interact with protons to form Rh³⁺ ions, which exhibit a TPR peak at 175-200°C [6]. From the dominance of the TPR peak caused by reduction of oxides it follows, that this protonolysis is small at a calcination temperature of 380°C. The assignment of the shoulder at 150°C is not entirely clear. We tentatively assign it to Rh³⁺. The shift to a lower reduction temperature is most likely the result of Rh3+ remaining in the supercages after calcination. In the case of Pd/NaY it was shown that ions that remain in the supercage are reduced at a lower temperature than those which have migrated into the small cages during high temperature calcination [17]. The presence of rhodyl ions, (RhO)⁺, which were previously identified by reduction with CO, cannot be excluded. Their reduction to Rh+ has been found to lead to a TPR peak in the region of 70–90°C [6].

We tentatively attribute the small peak around 350°C to the reduction of the Rh^+ to Rh^0 . This chemistry is under investigation in our laboratory and will not be further discussed here. After completing the TPR run up to 500°C, rhodium is completely reduced to Rh^0 , as follows from the amount of hydrogen consumed given in table 1. The ratio of H/Rh = 3.50 indicates that besides Rh^{3+} also Rh^{4+} is present, i.e. that not only Rh_2O_3 but also RhO_2 has been formed after calcination.

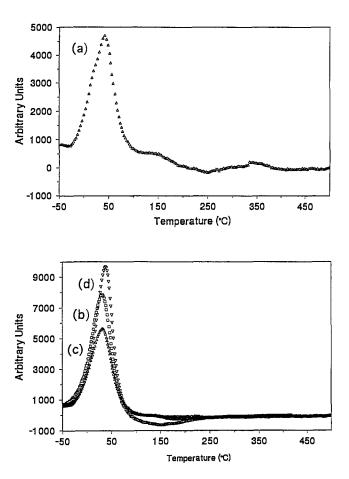


Fig. 1. (a) 1st TPR of a RhNaY sample after ion exchange and calcination up to 380°C. (b) 2nd TPR of RhNaY following the 1st TPR (a) and reoxidation up to 380°C. (c) 3rd TPR of RhNaY following the 2nd TPR (b) and reoxidation up to 500°C. (d) 4th TPR of RhNaY following the 3rd TPR (c) and reoxidation up to 320°C.

This is confirmed by subsequent oxidation of the reduced catalyst up to 380°C, followed by a second TPR run, shown in fig. 1b. Only one peak around 40°C is observed. The absence of TPR-peaks in the ionic region and the occurrence of a hydrogen desorption peak (visible as a dip in the TPR around 150°C) indicate reduction of the rhodium to metallic particles. The H/Rh ratio of 3.24 (table 1) suggests that, again, a mixture of RhO₂ and Rh₂O₃ is formed during oxidation of the sample after the first reduction. If RhO₂ or Rh₂O₃ are indeed coexisting, it follows from the phase diagram and general thermodynamic principles, that RhO₂ should prevail at lower temperature and higher oxygen pressures. We therefore varied the reoxidation temperature of reduced samples and determined the H/Rh ratio by TPR.

First, the reduced sample was re-oxidized up to 500°C. As shown in fig. 1c, the

Table 1
H-consumption per Rh-atom obtained from the integration of the TPR profiles presented in figs. 1a-1d

	$1st TPR (T_C = 380^{\circ}C)$	$2nd TPR (T_{ox} = 380^{\circ}C)$	$3rd TPR (T_{ox} = 500^{\circ}C)$	$4th TPR (T_{ox} = 320^{\circ}C)$
H/Rh	3.50	3.24	3.15	4.10

intensity of the TPR peak around 40° C is much lower than in the sample oxidized up to 380° C. Again, the rhodium is reduced to the metallic state after the TPR. The ratio of H/Rh = 3.15 in table 1 indicates that after calcination up to 500° C the dominant oxide is Rh_2O_3 .

Subsequently, the sample was re-oxidized (the fourth such treatment of this sample) up to 320°C. The result, shown in fig. 1d, is a much higher TPR peak at 40°C. No ionic species reducible above 100° C are detected. In the view of the experimental error of $\pm 5\%$ the ratio of H/Rh = 4.1 (table 1) indicates that oxidation at 320° C produces mainly the dioxide RhO₂.

Samples after calcination to 380°C and reduction to 500°C were inspected by TEM; no particles larger than the supercages were observed. The present TPR results indicate that for such particles the dioxide, RhO₂, is stable at 320°C, but the sesquioxide, Rh₂O₃, is more stable at 500°C. While this is similar to the stability sequence indicated by the phase diagram for macroscopic samples [11], it appears that the transition between the oxides is shifted to lower temperature, from 700 to 500°C, for the small particles in the present samples. The apparent co-existence of both oxides after oxidation up to 380°C in NaY supported Rh can be explained by assuming that there is a particle size distribution; it thus appears possible that with increasing temperature the conversion of RhO₂ to Rh₂O₃ starts with the smallest particles.

Nitric oxide reduction to N_2 and propane conversion to CO_2 versus temperature are shown in fig. 2. Nitric oxide conversion reaches a maximum at ca. 335°C, when 29% of NO_x is converted to N_2 . The selectivity (NO_x converted/ C_3H_8 converted) decreases with temperature; it is 0.56 at 325°C, when 28% NO_x is converted to N_2 while less than 50% of propane is oxidized, whereas at 335°C the selectivity is 0.36. These results suggest that the valence change between Rh^{4+} and Rh^{3+} is fast enough to catalyze a redox process such as the oxidation of propane by both O_2 and NO. However, TPR data of the used catalyst suggest that after reduction times of 4–5 h rhodium oxide particles have disintegrated to RhO^+ , which also might be able to undergo valence changes other than those between Rh^{3+} and Rh^{4+} . In any case, zeolite supported Rh can thus be added to the list of catalysts for NO reduction.

At a given temperature the activity decreases with time on stream at about 10%/h. Formation of coke, also indicated by postreaction-TPR, may be a contributing factor in this deactivation; whether the formation of RhO⁺ ions can also

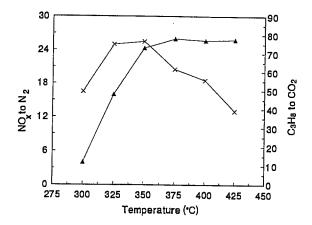


Fig. 2. Reduction of NO_x with propane as a function of temperature. Initial conversion of NO_x : (×). Initial conversion of propane: (\blacktriangle).

rationalize deactivation has not been clarified yet and is under investigation in our laboratory.

4. Conclusions

Rhodium in NaY is quantitatively reduced with H_2 to Rh^0 , if the previous calcination temperature does not exceed 500°C. Oxidation of the reduced Rh in O_2 at 1 bar results in formation of two oxides; at a temperature near 320°C the dioxide RhO_2 prevails; at higher temperature increasing amounts of the sesquioxide Rh_2O_3 are formed, it prevails after oxidation at 500°C. The oxidized catalyst is able to catalyze NO reduction with propane above 300°C. The selectivity for propane to react with NO rather than with O_2 is lower than for Cu/ZSM5 [18]. The selectivity decreases upon coke formation and (or) when Rh oxide particles are slowly converted to Rh ions.

Acknowledgement

The authors gratefully acknowledge support from the Director of the Chemistry Division, Basic Energy Sciences, US Department of Energy, Grant DE-FG02-87ER13654.

References

- [1] O. Beeck, Discuss. Faraday Soc. 8 (1950) 118.
- [2] R.L. Pruett, Adv. Organomet. Chem. 17 (1979) 1.

- [3] W.M.H. Sachtler, in: *Proc. 8th Int. Congr. on Catalysis*, Berlin 1984, Vol. I (Dechema, Frankfurt, 1984) p. 151.
- [4] K.T. Taylor, Catal. Rev. -Sci. Eng. 35 (1993) 457.
- [5] T.T.T. Wong, A.Yu. Stakheev and W.M.H. Sachtler, J. Phys. Chem. 96 (1992) 7733.
- [6] D. Tomczak, V. Zholobenko, H. Treviño, G. Lei and W.M.H. Sachtler, in: 10th Int. Zeolite Conf., Garmisch-Partenkirchen, 17-22 July 1994, submitted.
- [7] H. van Brabant, R.A. Schoonheydt and J. Pelgrims, in: *Metal Microstructures in Zeolite*, eds. P.A. Jacobs, N.I. Jaeger, P. Jirů and G. Schulz-Eckloff (Elsevier, Amsterdam, 1982) p. 61.
- [8] J.W. Niemantsverdriet, Spectroscopy in Catalysis (Verlag Chemie, Weinheim, 1993) p. 220.
- [9] L.-F. Rao, A. Fukuoka, N. Kosugi, H. Kuroda and M. Ichikawa, J. Phys. Chem. 94 (1990) 5317.
- [10] A.D. Logan, E.J. Braunschweig, A.K. Datye and D.J. Smith, Ultramicroscopy 31 (1989) 132.
- [11] O. Muller and R. Roy, J. Less-Common Metals 16 (1968) 129.
- [12] Y. Li and W.K. Hall, J. Catal. 129 (1991) 202.
- [13] W.K. Hall and J. Valyon, Catal. Lett. 15 (1992) 311.
- [14] T.T.T. Wong and W.M.H. Sachtler, J. Catal. 141 (1993) 407.
- [15] H.F.J. van 't Blik, PhD Thesis, University of Technology, Eindhoven, The Netherlands (1984) p. 145.
- [16] R.R. Gatte and J. Phillips, J. Phys. Chem. 91 (1987) 5968.
- [17] S.T. Homeyer and W.M.H. Sachtler, J. Catal. 118 (1989) 266.
- [18] J. d'Itri and W.M.H. Sachtler, Appl. Catal. B 2 (1993) L7.