Primary reaction steps and active surface sites in the rhodium-catalyzed partial oxidation of methane to CO and H₂

O.V. Buyevskaya, K. Walter, D. Wolf and M. Baerns 1

Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Received 26 September 1995; accepted 19 December 1995

The nature of surface sites responsible for methane activation and CO_x formation on Rh catalysts for the partial oxidation of methane to syngas was investigated. The interaction of CH₄ with Rh-black after oxidative and reductive pretreatments was studied applying (a) pulse experiments at reduced total pressure (10^{-4} Pa) and 1013 K in the temporal-analysis-of-product (TAP) reactor and (b) in situ DRIFTS at 973 K. The saturation of the metal surface sites with oxygen was found to inhibit methane dissociation. Direct methane oxidation to CO_2 on the oxidized surface sites proposed earlier was excluded. Methane is first dissociated on reduced surface sites; the carbon species formed, then, react with surface oxygen to CO_2 . Rh sites responsible for methane activation are neither related to the formation of the Rh₂O₃ nor Rh⁰. Probably the partially oxidized species (Rh⁺) or highly dispersed Rh³⁺ entities act as active surface centers for the dissociation of methane. For supported catalyst, such sites are stabilized by the support, which on the other side acts as a source of active oxygen involved in the oxidation of surface carbon and hydrogen.

Keywords: partial oxidation of methane; synthesis gas; rhodium; oxygen species; transient study; DRIFTS

1. Introduction

Recent mechanistic studies of the partial oxidation of methane to synthesis gas over Rh/γ - Al_2O_3 have shown that the final product distribution (CO, H_2 , CO_2 , H₂O) is strongly determined by the degree of surface coverage by oxygen [1,2]. The secondary formation of CO via a reaction between surface carbon from methane dissociation and CO₂ was confirmed for the whole range of the degree of reduction while the formation of hydrogen as a primary product was found to occur on the highly reduced surfaces. From these studies, however, the active and optimal oxidation state of rhodium remained unclarified; in particular, further elucidation of the role of the support in the formation of active Rh sites was required. Furthermore, the questions arose whether a common pathway of methane activation for the formation of all products exists and whether the simultaneous existence of different oxidation states of Rh is required to promote both, initial and consecutive reaction steps.

To analyze the catalytic behaviour of Rh sites in the absence of the support, rhodium-black was investigated applying transient experiments in the temporal-analysis-of-products (TAP) reactor and in situ DRIFT spectroscopy. The experimental results on the interaction of CH_4 and CH_4/O_2 mixtures with Rh-black after oxidative and reductive pretreatments and related sequences of

product formation were compared with corresponding results obtained for γ -Al₂O₃-supported Rh in the preceding studies [1,2].

2. Experimental

2.1. Catalysts

Rhodium-black (99.9%; Johnson Matthey) was used "as received" and after different pretreatments (see table 1). BET surface areas ($S_{\rm BET}$), metal surface areas ($S_{\rm Me}$) determined by CO adsorption at room temperature and phase compositions derived from XRD are summarized for the differently pretreated samples in table 1.

2.2. Transient studies

The pulse experiments were carried out in the temporal-analysis-of-products (TAP) reactor described elsewhere in detail [3,4]. Pulses of reactants $(10^{14}-10^{18} \text{ molecules/pulse})$ were injected via two high-speed valves into the reactor (L=42 mm, $D_{\text{in}}=5 \text{ mm}$), which contained 20 mg of Rh-black between two layers of quartz. All experiments were carried out at 1013 K. Pulse sizes between 2×10^{15} and 2.9×10^{16} molecules were applied; the responses of four to ten pulses were averaged. All gas mixtures contained 10% of an inert gas (Ne or Kr) as an internal standard.

The interaction of methane with Rh-black (as received) was studied after different pretreatments.

To whom correspondence should be addressed. Present address: Institut für Angewandte Chemie Berlin-Adlershof, D-12484 Berlin, Rudower Chaussee 5, Germany.

Table 1
Results on characterization of Rh-black

Catalyst pretreat	ment	Phase composition from XRD	$S_{\text{BET}} $ (m ² g ⁻¹)	$S_{ m Me} \ ({ m m}^2{ m g}^{-1})$	
"as received"		metallic Rh	9.5	0.4	
oxidized at 1023	K in 100 kPa O ₂	$Rh + Rh_2O_3(major)$	15	0.04	
reduced at 1000 I	K in 100 kPa H ₂	metallic Rh	3.2	0.2	

First, methane was pulsed over the catalyst which had been exposed to vacuum at 1013 K for 30 min. In a number of experiments, prior to pulsing methane, the catalyst was oxidized using continuous flow of O₂ at 1013 K. Thereafter, it remained exposed to vacuum (10^{-4} Pa) for 20 min. The interaction of methane with reduced surfaces was studied after pulsing hydrogen. Simultaneous pulsing of O₂ and CH₄ from two valves was applied in order to elucidate the role of gas-phase oxygen in the methane/surface interaction. The reactivity of surface carbon towards CO₂ was studied by sequential pulsing of methane and CO₂ with a time interval of 0.2 s. For mass spectroscopic identification of the different compounds the following atomic mass units (AMU) were used: 84 (Kr); 44 (CO₂); 32 (O₂); 30 (C₂H₆); 28 (CO₂, CO, C_2H_6 , C_2H_4); 26 and 25 (C_2H_6 , C_2H_4); 20 (Ne); 18 (H₂O); 15 (CH₄); 2 (H₂). The fragmentation patterns and relative sensitivities of all components were experimentally determined and used for data evaluation.

The gases employed were CH_4 (99.995%), O_2 (99.996%), CO_2 (99.995%), Kr (99.997%), Ne (99.999%), CO (99.999%) and H_2 (99.999%) from Messer-Griesheim (Oberhausen, Germany).

2.3. Spectroscopic studies

For diffuse reflectance in situ IR measurements a Unicam RS FTIR spectrometer with a commercial diffuse reflectance accessory (Spectra Tech, Mod. 003-102) was used. The catalyst was first pretreated in a continuous stream N2 at 973 K for 1 h. For the various experiments, the catalyst was further treated either by O₂ (20% in N_2) for 1 h at 973 K or by pure H_2 (3 m1/min) for 4 h at 973 K. After pretreatment with O2 or H2 the catalyst was purged continuously with N₂ for 30 min and the spectrum of the catalyst was recorded at 973 K. Then, the reaction mixture (5% CH₄ in N₂ or 5% CH₄ + 2.5% O2 in N2) was admitted at 973 K until constant band intensities were observed. The spectrum of the catalyst obtained before the introduction of the reaction gases was always subtracted from the spectra recorded during reaction, i.e. the final spectra represent only absorption bands of the adsorbed species and of the gases assuming that the spectrum was not changed by the presence of reactants. Spectra were recorded every minute (200 scans with a resolution of 4 cm⁻¹) starting with the admission of the reaction gases; this time interval depended on scan rate and resolution.

Gases of commercial purity N_2 (99.999%), CH_4 (99.995%) and H_2 (99.999%) were deoxygenated with an adsorptive oxygen trap. O_2 (99.995%) was used without further purification. The total flow rate was always 10 ml/min with the exception of the reduction in pure H_2 where catalyst was treated under static conditions.

3. Results and discussion

3.1. Methane activation and product distribution over Rh-black depending on the degree of reduction

Since pretreatment procedures of Rh-black, i.e. the selection of gaseous media (oxygen, hydrogen or vacuum), strongly determined the initial oxidation state of Rh, the solid-phase composition and the surface area (see table 1), the transient and spectroscopic studies on methane interaction with differently pretreated surfaces were performed to elucidate the nature of active sites involved in the methane dehydrogenation and in the formation of oxygen-containing products.

3.1.1. Rh-black "as received"

TAP results. Methane pulsed over Rh-black ("as received") after heating at 1013 K in vacuum (10⁻⁴ Pa) for 0.5 h reacted with surface oxygen being still present on the rhodium surface. This result is, however, not surprising against earlier work: For the oxygen interaction with single crystal Rh surfaces as well as with polycrystalline samples, in general, the following phenomena have been reported: (i) the initial adsorption rate of O₂ is high (sticking coefficients in the range between 0.62 and 1) at low temperatures (130–500 K) [5–8] and (ii) oxygen desorbs over a wide temperature range (700–1600 K) [5–7,9–11]. Thus, according to these results oxygen which has been adsorbed on Rh-black during its exposure to ambient atmosphere, might not have been completely desorbed under the conditions applied.

The dependences of CH₄ conversion and selectivities towards CO, CO₂, H₂ on the number of CH₄ molecules pulsed over Rh-black at 1013 K, which corresponded to an increasing degree of reduction, θ , are presented in fig. 1 (θ -value is estimated as a ratio of oxygen atoms consumed from the catalyst in the reaction with methane forming CO_x and H₂O to the total amount of oxygen atoms detected in the oxygen-containing products dur-

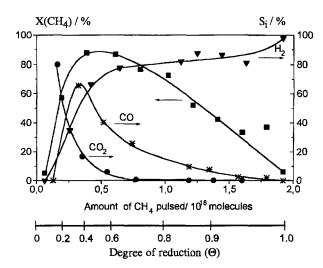


Fig. 1. Dependences of CH₄ conversion and product selectivities on the amount of CH₄ molecules pulsed at 1013 K over Rh-black ("as received") after heating at 1013 K in vacuum for 0.5 h.

ing pulsing CH₄, which corresponded to approximately 1% of the total Rh atoms).

A distinct increase in CH₄ conversion from 5 to 88% was observed during pulsing 5×10^{17} CH₄ molecules $(\theta \le 0.4)$ but then a monotonous decrease was detected with the further pulsing $(\theta > 0.4)$. Thus, methane conversion is inhibited by high coverage of the Rh surface by oxygen while low methane conversion at higher degree of reduction can be caused by different reasons, e.g. carbon deposition, decrease in metal surface area or changing the Rh oxidation state into an inert one.

Similar to Rh/ γ -Al₂O₃ [1], the product distribution over Rh-black was significantly affected by the degree of reduction (cf. fig. 1). During pulsing of 2.5×10^{17} CH₄ molecules only CO₂ and H₂O were detected as products. It should be noted that, for γ -alumina-supported Rh, the only detectable product in the reaction of CH₄ with the oxidized catalyst was CO₂ whereas no direct monitoring of the H₂O formation was possible due to its slow desorption or formation of OH groups on the support surface [1]. For unsupported Rh, water formed by the oxidation of methane with surface oxygen desorbed fast as derived from the narrow H₂O response (see fig. 2); this allowed more exact estimation of the oxygen amounts consumed in the reaction with methane. With increasing degree of reduction selectivities to CO₂ and H₂O decreased coinciding with increased selectivity to CO and H₂. While CO selectivity passed through a maximum at approximately $\theta = 0.4$ a steady rise of H₂ selectivity with pulsing of methane was observed.

Methane interaction with Rh-black ($X_{\rm CH_4} = 5\%$ during the first pulses) reveals a significant difference to the results on pulsing of methane over Rh/ γ -Al₂O₃ where already 93% of CH₄ conversion initially occurred with a further increase up to 99.8%. The reaction scheme proposed in the previous work included the interaction of methane molecules with oxidized and reduced metal sur-

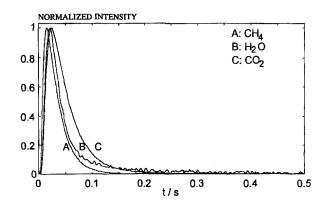


Fig. 2. Normalized responses of CH₄, CO₂ and H₂O in the reaction of methane with surface oxygen of Rh-black (cf. fig. 1) after pusing (1.6–2.6) \times 10¹⁷ CH₄ molecules.

face sites yielding CO₂ and surface carbon as primary products, respectively [1]. Present results on Rh-black, however, show that high coverage of the Rh surface by oxygen inhibits methane conversion. Thus, the direct formation of CO₂ via a reaction of methane with the oxidized surface center proposed in the previous study cannot be considered as a primary reaction step of methane interaction with Rh surfaces. Reduced metal sites are required for the methane activation, which most probably consists in methane dehydrogenation. When considering the results on methane interaction with the supported catalyst it can be proposed that reduced Rh sites are stabilized by support resulting in high methane conversion even after oxidative pretreatment. Further results on the activity of oxidized Rh sites in the oxidation of methane are presented below.

3.1.2. Rh-black after oxidation

Methane interaction with Rh-black after pretreatment in a continuous flow of O_2 was investigated using both, transient and spectroscopic techniques; the XRD pattern of the oxidized Rh-black showed the major presence of Rh₂O₃ along with metallic Rh (see table 1).

TAP results. Reaction of methane with Rh-black pretreated in O_2 at 1013 K resulted only in the formation of CO_2 and H_2O with a maximum yield of 3% during pulsing 8×10^{18} CH₄ molecules (table 2). By contrast, for the sample "as received", which contained only small amount of oxygen (approximately 1% of the total number of Rh atoms), the changes in the methane conversion and product distribution occurred during pulsing only 2×10^{18} CH₄ molecules (cf. table 2). For the oxidized catalyst, even more extended pulsing of methane did not result in an increase in the methane conversion and in the formation of syngas. These results show that the Rh₂O₃ phase present predominantly in the oxidized sample is inactive for the methane oxidation.

DRIFTS results. The interaction of CH₄ with oxidized Rh-black (fig. 3) at 973 K showed a rather high induction time of 5 min for the formation of gas-phase

Table 2
Surface titration with methane: X _{CH4} , S _{CO} , S _H , depending on the number of CH ₄ molecules pulsed over Rh-black after different pretreatments

Pretreatment	Amount of pulsed CH ₄ (10 ¹⁷ molecules)	Х _{СН} . (%)	S _{CO} (%)	S _{H2} (%)
"as received", vacuum for 30 min at 1013 K	0.3-0.5	5	0	0
	4–6	88	40	68
	> 19	0	_	
oxidation at 1013 K partial reduction by H_2 pulsing at 1013 K of	< 80	3–5	0	0
the oxidized sample ($O_{removed}/Rh_{total} = 0.22$)	0.3–1.2	93	25	16
complete reduction by H ₂ pulsing at 1013 K	0.3-3.7	0	_	_

CO compared to supported Rh (1 min, ref. [2]) which is in agreement with a low activity for methane activation of the oxidized Rh surface observed in the TAP experiments. When a CH₄/N₂ stream was passed over the catalyst at 973 K after pretreatment with O₂ at 973 K only an absorption band at 2359 cm⁻¹ due to CO₂ in the gas phase was observed after 1 min of exposure. The CO₂ band gained its maximum intensity only after 4 min of exposure time. After 5 min of methane exposure a CO band with two maxima at 2181 and 2085 cm⁻¹ appeared indicating CO in the gas phase. After 10 min the CO₂ band was vanished. Simultaneously, absorption bands at 3014 and 1302 cm⁻¹ due to CH₄ in the gas phase were observed. After 30 min the CO bands were also nearly vanished.

3.1.3. Rh-black after reduction

Since methane dehydrogenation was assumed to be the only initial reaction step in the partial oxidation of methane further information on the nature of active sites (metallic Rh or partly oxidized Rh species) responsible for the methane dissociation is desirable. Relating to this point the experiments on methane interaction with Rh-black after reductive pretreatments have been performed.

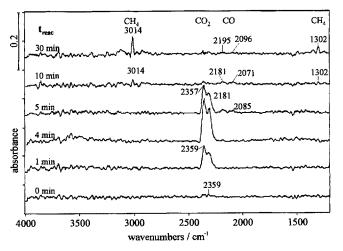


Fig. 3. DRIFTS spectra of adsorbates on the surface of Rh-black after O_2 pretreatment when exposed to CH_4 at 973 K after different reaction times ($t_{\rm reac}$).

TAP results. Oxidized Rh-black, which showed low activity during pulsing 8 × 10¹⁸ CH₄ molecules (see above), was treated in situ at 1013 K by pulsing H₂; total conversion of H₂ to H₂O was observed on pulsing 2.3×10^{19} H₂ molecules; then the conversion of H₂ decreased but stayed rather high (55-60%). The amount of oxygen removed from Rh-black by this treatment corresponded to 2.6×10^{19} atoms or to an Oto-Rh ratio of approximately 0.22. The reaction of CH₄ after this partial reduction of Rh-black resulted in high CH₄ conversion of 93% (cf. table 2). Complete reduction was achieved by further H₂ pulsing until no conversion of H₂ was detected. This pretreatment caused a total deactivation of Rh-black towards methane dissociation, i.e., no conversion of methane occurred when methane was pulsed over the completely reduced sample.

DRIFTS results. When passing methane over the Rh-black after its heating in hydrogen at 973 K no formation of surface or gas-phase products was observed within 40 min time on stream. When a CH₄/O₂ mixture passed over the H₂-pretreated sample, the delay in the formation of CO_x products was observed compared to the reaction of CH₄ over the oxidized Rh-black. The CO₂ band intensity reached a maximum after 10 min of exposure. CO was observed after 20 min only. These results show that restoring of the activity of the reduced Rh-black during passing of a CH₄/O₂ mixture takes place due to the presence of oxygen in the reaction mixture. Taking into account a rather long induction period for the formation of products it should be assumed that the reduced form of Rh initially present after treatment with hydrogen was not active in the oxidation of methane.

One of the possible reasons of catalyst deactivation after reduction might be a loss in surface area. Considering, however, the metal- and BET-surface areas of two samples ("as received" and reduced) the decrease of $S_{\rm Me}$ from 0.4 to 0.2 m² g⁻¹ and $S_{\rm BET}$ from 9.5 to 3.2 m² g⁻¹ cannot explain the complete deactivation since the number of surface Rh sites decreased only by a factor of 2–3. Therefore, the reason of deactivation can be a destruction of active sites for methane conversion by complete catalyst reduction. Partially oxidized Rh, e.g. Rh¹⁺, or

highly dispersed Rh³⁺ entities on the surface might be required for methane activation.

3.1.4. Summary on the role of Rh oxidation state in methane activation

Present results clearly demonstrated that oxidation of the Rh surface resulted in a loss of activity for the methane activation while the presence of oxygen in small amounts had a positive effect on catalyst activity toward the methane dehydrogenation. Since we observed the formation of CO₂ as the only carbon-containing product in the beginning of the reaction of methane with surface oxygen, the findings reported in the literature on the nature of active sites in the combustion of methane should be taken into account. A recent study of Burch and Loader [12] on methane oxidation on Pt/Al₂O₃ catalysts showed that the optimum rate of reaction corresponded to a platinum surface partially covered by both oxygenand carbon-containing species and that dissociative adsorption of methane is accelerated by the presence of the remaining surface oxygen. As conclusion the authors postulated that neither a fully reduced nor a fully oxidized platinum surface is optimal for methane oxidation; instead, an intermediate degree of surface reduction is required. It should be noted that, however, platinum in the metallic state was proposed as the most active form in earlier studies [13,14]. Interesting results on the oxidation state of noble metal during high-temperature methane oxidation have been reported by Farrauto et al. [15]; they found that when only palladium metal is present no methane activity exists and that the presence of PdO is required. No similar investigations for Rh-containing catalysts are, however, known.

In our earlier transient study on Rh/Al₂O₃ catalyst, a small increase in the CH₄ conversion from 93% to > 99% with increasing number of CH₄ pulses was observed during the interaction of CH₄ with the oxidized surface [1]. This effect was less significant compared to unsupported Rh where only very low CH₄ conversion of 3-5% occurred during CH₄ pulsing over the oxidized surface (cf. table 2). This indicates that a much higher concentration of the surface sites responsible for CH₄ dissociation was available on the supported catalyst even after oxidation at 1013 K. Another difference in the reaction of methane over Rh-black and supported Rh is the amount of oxygen involved in the reaction with methane in the absence of gas-phase oxygen. When CH₄ was pulsed over Rh-black after its exposure to vacuum for 30 min, the amount of oxygen which reacted with CH₄ corresponded to an O-to-Rh ratio of 0.01. An attempt to increase the amount of reactive oxygen by oxidative treatment led to the formation of inactive surface. Contrary to Rh-black, a high amount of oxygen (O-to-Rh ratio > 1.3) was consumed from the supported catalyst in the reaction with CH₄ forming CO and CO₂. Thus, two effects of the support were derived:

- Metal sites responsible for CH₄ dissociation are sta-

bilized by the support; oxidative treatment does not lead to deactivation due to Rh₂O₂ formation.

-High oxygen storage capacity of the support in addition to oxygen from rhodium for the reaction of carbon species to CO₂ is provided.

The nature of active metal sites involved in the dissociation of methane is, however, still an open question. On the basis of TAP and DRIFTS results on methane interaction with completely reduced Rh-black it can be assumed that fully reduced rhodium is most probably not involved in the dissociation of methane. The high catalyst activity of Rh-black always coincided with the presence of the small oxygen amounts when formation of partially oxidized Rh, e.g., Rh¹⁺, but no Rh₂O₃ phase formation can take place. In the case of the supported catalyst these centers can be stabilized by oxide support. More detailed studies on the Rh oxidation state in γ -alumina supported catalysts during the partial oxidation of methane to syngas applying in situ XPS and DRIFTS techniques are presently in progress.

3.2. The nature of the primary products

As mentioned above, the first step of CH₄ interaction with catalyst surface consists in its dissociation on the reduced surface sites. Contrary to our previous suggestion it is evident now that CO₂ is formed via the reaction of carbon deposits resulting from initial methane dissociation with surface oxygen and not via a direct interaction of methane with the surface oxygen. Although only CO₂ and H₂O were initially formed during the interaction of methane with the catalytic surface (cf. figs. 1 and 3), the elucidation of product sequence on the partly reduced surfaces when CO and H₂ are also produced requires the precise analysis of the product responses.

3.2.1. Sequence of CO, CO₂, H_2 and H_2O formation from methane

Contrary to Rh/Al₂O₃, where the formation of H₂O could not be directly monitored, all reaction products in the case of Rh-black were detected at the reactor outlet allowing the complete analysis of their response sequence. This analysis is based on the comparison of the surface residence times of products, which can be calculated from the measured first moments of the concentration responses at the reactor outlet. The first moment of the pulse response (t_P) reflecting the mean residence time in the TAP reactor is determined by diffusion time through the reactor and by residence time of the reactant on the surface due to adsorption, desorption and reaction processes. The gas transport in the range of pulse sizes applied occurred mainly by Knudsen diffusion:

$$\frac{\partial c}{\partial t} = -D_{K,eff} \frac{\partial^2 c}{\partial x^2} \,. \tag{1}$$

To evaluate the surface residence time the contribution

of the diffusion time should be eliminated. According to diffusion theory diffusion time $(t_{\rm D})$ through the reactor is determined by the molar mass $M_{\rm p}$ of the compound. Therefore, the diffusion times for various products can be calculated from the diffusion time of an inert gas $(t_{\rm inert})$, which was present in the reaction mixture as an internal standard:

$$t_{\rm D} = t_{\rm inert} (M_{\rm p}/M_{\rm inert})^{1/2}. \tag{2}$$

However, when comparing the diffusion times of the inert gas with that of reaction product it has to be taken into account that the diffusion of the inert gas starts at the reactor inlet and passes first the quartz layer while the product is formed within the catalyst bed. Since initially the concentration of the product is zero at both reactor inlet and outlet, its diffusion proceeds in both directions; this was accounted for in the reactor model [16]. In order to obtain an appropriate inert standard signal that can be compared to the measured product responses a simulation of the inert gas response has been performed assuming that the diffusion of inert gas starts at the center of the catalyst bed. The simulated inert gas response is illustrated in fig. 4; the diffusion coefficient was derived from the measured response (cf. fig. 4). The value of the first moment for the simulated inert gas response $(t_{\text{inert}}^{\text{sim}})$ was then used for the determination of the diffusion time of product (t_D) according to eq. (2).

The difference between total mean residence time in the reactor (t_P) and diffusion time for each product (t_D) reflects the delay due to surface processes, i.e., the surface mean residence time (t_S) can be estimated as:

$$t_{\rm S} = t_{\rm P} - t_{\rm D} \,. \tag{3}$$

The corresponding t_8 values of the products CO₂, CO, H₂O and H₂ during the reaction of methane and methane/oxygen mixture with Rh-black are summarized in table 3. The surface residence times of the various products during pulsing methane were influenced by the degree of reduction. During the first pulses of

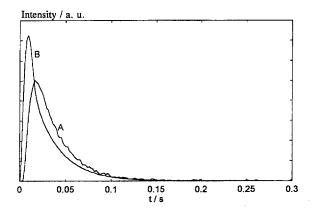


Fig. 4. Neon responses at the reactor outlet at 1013 K: (A) measured response when pulsing CH₄/Ne (1:1) mixture; (B) simulated response assuming that diffusion starts at the center of the catalyst bed.

methane when only CO₂ and H₂O were formed, the very short surface residence time of CO₂ (6 ms) showed its fast formation and desorption. From the experiments on pulsing CO₂ the surface residence time due to adsorption/desorption amounted to 3 ms indicating that no strong adsorption of CO₂ occurred. With increasing degree of surface reduction an increase in ts-values for both CO and CO₂ was observed. After pulsing (3.8- $5.7) \times 10^{17}$ CH₄ molecules the t_8 -values of CO and CO₂ amounted to 113 and 83 ms, respectively. The reduction of the surface, however, did not affect the adsorptiondesorption processes during the interaction of CO and CO₂ with Rh-black as was derived from the separate pulsing of CO and CO₂. Taking this into account the observed high t_S -values for CO and CO₂ (cf. table 3) produced from methane should be determined mainly by their slower formation on the partly reduced surface. The higher value for CO compared to CO₂ must be, thus, ascribed to its secondary formation.

A high surface residence time of hydrogen was detected in the whole range of degrees of surface reduction where hydrogen was observed. In order to clarify the reason, the adsorption of hydrogen with almost completely reduced rhodium black was investigated when H₂ conversion was negligible. From the corresponding high t₈-value, which was similar to that observed in methane conversion, can be concluded that the long mean residence time of H₂ formed in the reaction of methane is due to its strong adsorption. Most propably primary hydrogen formation by methane decomposition was realized under the conditions applied.

To analyze whether the product formation during methane interaction with the surface is affected by gasphase oxygen the product sequence has been further investigated for the reaction of the methane/oxygen mixture with the surface. A $CH_4/O_2 = 1.8$ mixture was pulsed over Rh-black at 1013 K; the product distribution obtained after 560 pulses corresponded to complete oxygen conversion. The oxygen balance amounted to $100 \pm 3\%$ indicating that all oxygen pulsed is involved in the product formation. The responses of methane and the reaction products at the reactor outlet are presented in fig. 5; the corresponding $t_{\rm S}$ -values are summarized in table 3. Results of carbon balance indicated that carbon deposits were formed. The low yield of products containing hydrogen ($H_2O + H_2 = 68\%$) may be explained by the fact that some H₂ was not detected due to its slow desorption and/or due to formation of hydrogen-containing carbon species. Formation of CO was slower compared to other products as can be seen from the highest $t_{\rm S}$ -value (cf. table 3). Thus, its secondary formation compared to CO₂ can be assigned to the reaction of surface carbon with CO₂ according to the reaction mechanism proposed earlier [1]. Results on the reaction of surface carbon with CO₂ on Rh-black surface are described below.

Table 3 Results on yields (Y) and surface residence times (t_8) of the reaction products during pulsing of CH₄ and CH₄/O₂ = 1.8 mixture over Rh-black at 1013 K as well as t_8 -values for the products during their separate pulsing

Products	Reaction of CH ₄ after pulsing $(1.2-1.6) \times 10^{17}$ CH ₄ molecules (cf. fig. 1)		Reaction of CH ₄ after pulsing $(3.8-5.7) \times 10^{17}$ CH ₄ molecules (cf. fig. 1)		Reaction of CH ₄ /O ₂		Separate pulsing of reactants
	Y (%)	t _S (ms)	Y (%)	t _S (ms)	Y (%)	t _S (ms)	$t_{\rm S}$ (ms)
СО	0		35	113	68	67	< 1
CO_2	30	6	5	83	4	10	3
H_2	0	_	58	50	55	35	52
H ₂ O	26	21	15	16	13	40	n.d.

3.2.2. Interaction of CO_2 with carbon species from methane decomposition

The reaction of surface carbon species and CO_2 was found to be responsible for the formation of CO on the supported noble metal catalysts [1,17]. In order to elucidate whether the support sites are required for this reaction, the interaction of CO_2 with surface carbon on unsupported Rh was examined.

CO₂ was pulsed over Rh-black after reaction of the $CH_4/O_2 = 1.8$ mixture followed by O_2 pulsing in order to remove the remainder of carbon deposits. No conversion of CO₂ was observed in the absence of carbon deposits. Then methane $(1.6 \times 10^{16} \text{ molecules})$ was pulsed followed by a CO_2 pulse $(0.9 \times 10^{16} \text{ molecules})$ with a time interval of 0.2 s in order to examine the reaction of carbon species from methane decomposition with CO₂; the respective responses are shown in fig. 6. The formation of CO with the yield of 70% occurred during pulsing of CO₂. Results confirmed the high reactivity of carbon species from methane dissociation in the reaction with CO₂ also in the case of unsupported metal. Thus, CO can be easily formed via the reaction $C + CO_2 \rightarrow 2CO$ which appears to be the main reaction pathway of CO formation on the pure metal surfaces even without presence of support sites for CO₂ adsorption.

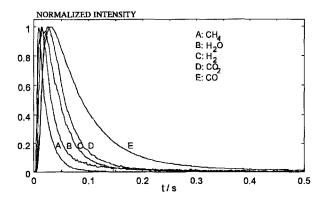


Fig. 5. Normalized responses of methane and reaction products during pulsing $CH_4/O_2=1.8$ mixture over Rh-black at 1013 K.

4. Conclusion

The mechanism of partial oxidation of methane over Rh catalysts is summarized by the following reaction sequence (x = 1, 2, 3):

(1) Methane activation:

$$CH_4 + 2[Rh] \rightarrow [CH_x - Rh] + ((4 - x)/2)H_2$$

$$[CH_x-Rh] \rightarrow [C-Rh] + (x/2)H_2$$

(2) Total oxidation:

$$[CH_x-Rh]+[Rh-O]$$

$$\rightarrow$$
 CO₂ + $(x/2)$ H₂O $(x$ OH $)$ + 2[Rh]

$$H_2 + [Rh-O] \rightarrow H_2O + [Rh]$$

(3) Reversed Boudouard reaction:

$$[CH_x-Rh]+CO_2 \rightleftharpoons 2CO+(x/2)H_2+[Rh]$$

(4) Reforming:

$$[CH_x-Rh] + H_2O/OH \rightleftharpoons CO + (x/2+1)H_2 + [Rh]$$

(5) Surface reoxidation:

$$[Rh] + O_2 \rightarrow [Rh-O]$$

From the results described above it follows that CH₄ interacts first with the catalyst surface leading to its dis-

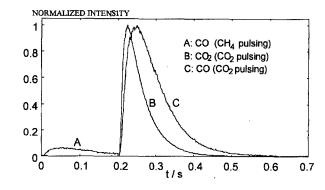


Fig. 6. Responses of CO (A and C) and CO₂ (B) in the experiment with sequential pulsing of CH₄ and CO₂ with time interval of 0.2 s over Rhblack at 1013 K.

sociation on reduced metal sites (reaction (1)); carbon species formed, in turn, react with surface oxygen yielding CO₂ (reaction (2)). A parallel reaction pathway of CO₂ formation via direct interaction of CH₄ with oxidized surface sites as proposed earlier [1] can be excluded based on the present results on Rh-black. Formation of CO occurs via surface reaction of carbon deposits with CO2 also on Rh-black as proposed earlier for Rh/7-Al₂O₃ (reaction (3)). No evidence for the steam reforming reaction (reaction (4)) over Rh-black was found. However, this reaction occurs on Rh/ γ -Al₂O₃, as was derived from earlier DRIFTS study [3]. Comparing the reaction pathway over unsupported Rh-black with those over Rh/ γ -Al₂O₃, the activity of both catalysts towards CH₄ dehydrogenation and CO_x formation was determined by the concentration of active oxygen species, i.e., by the degree of surface reduction. From the present study it was derived that Rh sites responsible for methane activation are neither related to the formation of the Rh₂O₃ nor Rh⁰. Probably the partially oxidized species (Rh⁺) or highly dispersed Rh³⁺ entities act as active surface centers for the dissociation of methane. For supported catalyst, such sites are stabilized by the support, which on the other side acts as a source of active oxygen involved in the consecutive oxidation of the primary reaction products (reaction (2)).

Acknowledgement

This work has been funded by the European Union (Contract No. JOU2-CT92-0073). The authors thank M. Soick for the simulation of TAP responses.

References

- [1] O.V. Buyevskaya, D. Wolf and M. Baerns, Catal. Lett. 29 (1994)
- [2] K. Walter, O.V. Buyevskaya, D. Wolf and M. Baerns, Catal. Lett. 29 (1994) 261.
- [3] J.T. Gleaves, J.R. Ebner and T.C. Kuechler, Catal. Rev. Sci. Eng. 30 (1988) 49.
- [4] O.V. Buyevskaya, M. Rothaemel, H.W. Zanthoff and M. Baerns, J. Catal. 146 (1994) 346.
- [5] G.B. Fisher and S.J. Schmieg, J. Vac. Sci. Technol. A 1 (1983) 1064.
- [6] E. Schwarz, J. Lenz, H. Wohlgemuth and K. Christmann, Vacuum 41 (1990) 167.
- [7] T. Matsushima, J. Catal. 85 (1984) 98.
- [8] M. Bowker, O. Guo and R. Joyner, Surf. Sci. 253 (1991) 33.
- [9] P.A. Thiel, J.T. Yates Jr. and W.H. Weinberg, Surf. Sci. 82 (1979) 22.
- [10] D.N. Belton, G.B. Fisher and C.L. DiMaggio, Surf. Sci. 233 (1990) 12.
- [11] A.N. Salanov and V.I. Savchenko, Surf. Sci. 296 (1993) 393.
- [12] R. Burch and P.K. Loader, Appl. Catal. A 122 (1995) 169.
- [13] V.A. Drozdov, P.G. Tsyrulnikov, V.V. Popovskii, N.N. Bulgakov, E.M. Moroz and T.G. Galeev, React. Kinet. Catal. Lett. 27 (1985) 425.
- [14] R.G. Hicks, H. Oi, M.L. Young and R.G. Lee, J. Catal. 122 (1990) 280.
- [15] R.J. Farrauto, M.C. Hobson, T. Kennelly and E.M. Waterman, Appl. Catal. A 81 (1992) 227.
- [16] M. Rothaemel, PhD Thesis, Ruhr-Universität Bochum, Germany (1995).
- [17] M.F. Mark and W.F. Maier, Angew. Chem. 106 (1994) 1738.