Chromium substituted AlPO-11: synthesis, characterisation and its application in oxidation reactions

M. Eswaramoorthy, N. John Jebarathinam, N. Ulagappan and V. Krishnasamy 1

Department of Chemical Engineering, Anna University, Madras 600 025, India

Received 13 August 1995; accepted 15 January 1996

Isomorphous substitution of Cr³⁺ for Al³⁺ in AlPO₄-11 framework followed by calcination converts Cr³⁺ to dioxochromium (VI) by incorporating extra framework O²⁻ ligands, generating Brønsted acidity. CrAPO-11 catalyses oxidation of phenol to dihydroxybenzenes to the extent of 28%.

Keywords: isomorphous substitution; AlPO₄-11 molecular sieve; phenol; dihydroxybenzene

1. Introduction

Isomorphous substitution of transition metal ions into the framework of AlPO₄s and their catalytic properties are being the subject of numerous studies [1–5]. The initial pH of AlPO₄-gel is weakly acidic, which promotes incorporation of a hydrolysable metal cations into the framework and inhibits the precipitation of spurious hydroxides and oxides [6]. However,the importance of Ti and Cr as redox metals has been realised only recently [7–9]. This work deals with the synthesis of CrAPO-11, its properties with respect to the oxidation state of chromium and its application in oxidation reactions.

2. Experimental

2.1. Synthesis of CrAPO-11

Aluminium isopropoxide, di-n-propylamine (DPA), phosphoric acid and chromium nitrate were used as the starting materials for the synthesis. Based on preliminary experiments, the following molar ratio of initial gel composition was chosen: $0.034\text{Cr}_2\text{O}_3: \text{Al}_2\text{O}_3: \text{P}_2\text{O}_5: \text{DPA}: 40\text{H}_2\text{O}$.

In a typical synthesis, half of the required amount of water was added to aluminium isopropoxide and allowed to stand overnight, stirred vigorously for 2 h. Phosphoric acid mixed with the required amount of chromium nitrate was added to the above gel and stirred for a further 2 h. To this mixture DPA was added and again stirred for 2 h. The gel was transferred to a stainless steel autoclave and its pH was adjusted to 3.5 by adding HCl. The autoclave was closed and kept at 200°C for 24 h. The crystalline solid product was filtered, washed and dried at 110°C for 3 h.

2.2. Characterisation of CrAPO-11

The synthesised material was characterised by XRD (Philips X-ray diffractometer PW 1050 with microprocessor controller) using Cu Ka radiation, scanning electron microscopy (SEM) using a Hitachi S2400 scanning microscope, ²⁷Al and ³¹P MAS NMR using a Bruker MSL 200 spectrometer at 8.3 kHz, diffuse reflectance spectroscopy (DRS) using a Cary-2390 UV-vis spectrophotometer, FTIR with a Bruker IFS 66V FTIR spectrometer using the KBr pellet technique and TGA using a Mettler-TA 2000 series. Elemental analysis was performed using inductively coupled plasma-emission spectrometry (ARL 3410 with minitorch). The acidity and the distribution of acid sites over oxidised and reduced CrAPO-11 were determined thermogravimetrically with pyridine as the base. The surface area and the pore volume were determined by conventional BET method. Reduction of the catalyst was performed by H₂ with a flow rate of 10 ml/min at 400°C.

3. Results and discussion

The XRD spectrum of as-synthesised CrAPO-11 given in fig. 1 does not differ much from that of assynthesised AlPO₄-11, showing that it is highly crystalline. The SEM picture (fig. 2) shows large growth aggregates (10-15 μ m) made up of small prisms. The individual prisms are 1.5-3 μ m in length. The peaks at 35.11 and -29.80 ppm for the aluminium and phosphorus respectively, exhibited in the ²⁷Al and ³¹P MAS NMR spectra (figs. 3 and 4), show that aluminium and phosphorus in CrAPO-11 are in tetrahedral coordination. The surface area of calcined CrAPO-11, determined by the BET method, was 272 m²/g. The pore volumes obtained by O₂ (at $p/p_0 = 0.4$ at liquid N₂ temperature) and cyclohexane adsorptions (at $p/p_0 = 0.4$ at

¹ To whom correspondence should be addressed.

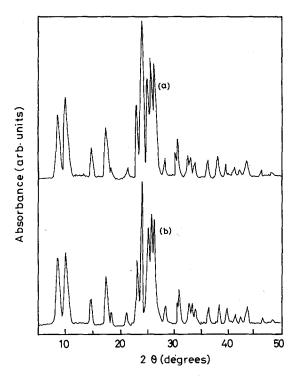


Fig. 1. XRD patterns of (a) AlPO₄-11 as synthesised, (b) CrAPO-11 as synthesised.

room temperature) were 0.087 and 0.068 cm³/g respectively. The chemical composition by ICP analysis gives the following molar ratio: $0.03 \text{Cr}_2 \text{O}_3 : 0.97 \text{Al}_2 \text{O}_3 : P_2 \text{O}_5$. The data obtained by chemical analysis gives good balance of (Cr + Al) to phosphorus indicating isomorphous

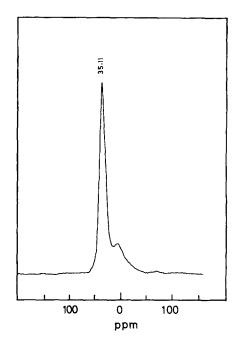


Fig. 3. ²⁷Al MAS NMR spectrum of as-synthesised CrAPO-11.

substitution of aluminium by chromium and absence of chromium phosphate. Further, the absence of non-framework chromium as Cr_2O_3 in the as-synthesised and calcined samples is evident from the absence of the peaks around 700 cm⁻¹ and at 951 and 906 cm⁻¹ in FTIR. If Cr_2O_3 exists, it would be converted by calcination to CrO_3 , which could be leached out by washing with water [10]. Analysis of the leachate by ICP and chemical

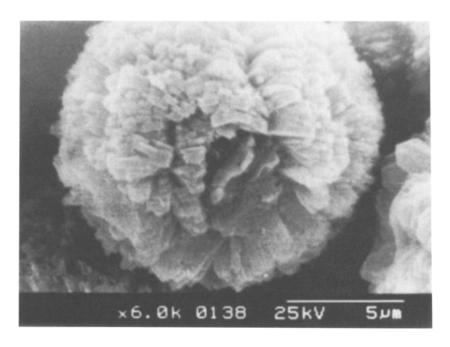


Fig. 2. SEM picture of as-synthesised CrAPO-11.

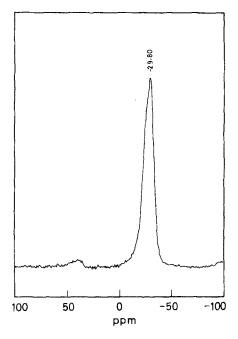


Fig. 4. 31 P MAS NMR spectrum of as-synthesised CrAPO-11.

Transmittance (%) (an)

(a)

(b)

(c)

(d)

(an)

(an)

(an)

(an)

(an)

(b)

(an)

(an)

(an)

(b)

(an)

(b)

(an)

(

Fig. 6. FTIR spectra of (a) AIPO₄-11, (b) CrAPO-11 as synthesised, (c) CrAPO-11 calcined in air at 550°C for 12 h.

method showed the absence of chromium. The IR spectrum of the calcined and washed CrAPO-11 was not different from that of calcined CrAPO-11.

The diffuse reflectance spectrum (fig. 5) of the assynthesised sample gives peaks at 410 nm and at 580 nm which were assigned to Cr³⁺ in the octahedral position [11], which is similar to that of Al³⁺ in VPI-5, AlPO-11 and SAPO-34 within the framework [12,13]. However,

heating under vacuum at 400°C, gives a peak at 1200 nm in DRS, which is assigned to chromium in the tetrahedral sites [14]. This was further confirmed by the absence of a peak in ESR [15]. Upon calcination for 12 h, Cr³⁺ is oxidised to Cr⁶⁺ yielding a band at 370 nm in the DRS and no peak in the ESR spectrum.

The peak at 726 cm⁻¹ in the FTIR (fig. 6) is due to a combination of Al-O and P-O vibrations [16] in AlPO-11 which is shifted to 736 cm⁻¹ in CrAPO-11 indicating the

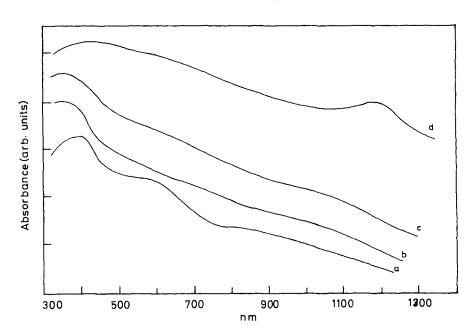


Fig. 5. DRS spectra of (a) as-synthesised CrAPO-11, (b) CrAPO-11 calcined at 550°C for 12 h, (c) calcined CrAPO-11 after washing with water, (d) as-synthesised CrAPO-11 after evacuation at 400°C.

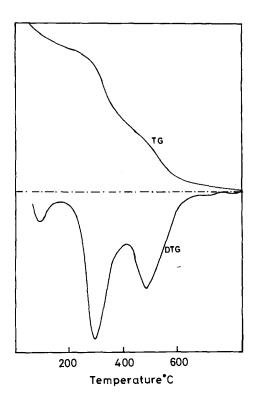


Fig. 7. TG curve of as-synthesised CrAPO-11.

possibility of incorporation of chromium into the AlPO-11 framework. The appearance of the peak at 1010 cm⁻¹ for calcined CrAPO-11 and its absence in as-synthesised CrAPO-11 confirms the formation of oxochromium (VI) during calcination by incorporation of O²⁻ ligands. This peak at 1010 cm⁻¹ is assigned to the Cr=O vibration [17]. To balance the negative charge created by the formation of oxochromium, Brønsted acid sites are generated.

TG studies of neutral AlPO₄-11 show weight losses only at two temperatures [9,18], one due to desorption of physicorbed water molecules and the other due to removal of physically adsorbed template molecules. In the case of divalent metal substituted AlPO₄-11, the loss occurs in more than two stages and the weight losses at higher temperatures (> 400°C) are attributed to the degradation of protonated or metal complexed amines [19,20]. The observed weight loss in this investigation (fig. 7) at a relatively higher temperature (470°C) is similar to the weight loss suffered by MeAPO-11 (Me = divalent metals) which may be attributed to removal of protonated amine from CrAPO-11. This lends support to the creation of Brønsted acid sites during calcination [21].

Moreover, the oxidised form of CrAPO-11 possesses stronger acid sites determined by pyridine adsorption, while the acidity of the reduced form is almost the same as that of neutral AlPO-11 (table 1), which further confirms the above observation.

Liquid phase oxidation of phenol, toluene and benzene by H_2O_2 over oxidised and reduced CrAPO-11 (reduced with H_2 at 400°C for 4 h, and showing a peak for Cr^{5+} in the ESR spectrum) was carried out and the results are presented in table 2. Compared to oxidised

Table 1
Distribution of acid sites over CrAPO-11 and AlPO-11

Catalyst	< 200°C weak (mmol/g)	200-400°C medium (mmol/g)	> 400°C strong (mmol/g)	Total acidity (mmol/g)
oxidised CrAPO-11	0.14	0.08	0.05	0.27
reduced CrAPO-11 a	0.12	0.02	_	0.14
AlPO-11	0.11	_	_	0.11

a Reduced with H₂ (flow rate 10 ml/min) at 400°C for 8 h.

Table 2 Liquid phase oxidation with H₂O₂ catalysed by CrAPO-11 ^a

	Catalyst	Reactant	Conversion (mol%)	Product	Yield (mol%)
oxidised CrAPO-11	oxidised CrAPO-11	phenol	19.0	hydroquinone	9.5
				catechol	8.7
reduced CrAPO-11	phenol	28.7	hydroquinone	17.0	
			catechol	10.8	
	oxidised CrAPO-11	toluene	6.4	o-cresol	3.0
			p-cresol	3.2	
reduced CrAPO-11	toluene	7.7	o-cresol	3.4	
			p-cresol	3.8	
	oxidised CrAPO-11	benzene	5.0	phenol	4.9
	reduced CrAPO-11	benzene	7.8	phenol	7.6

^a Conditions: catalyst 200 mg; H₂O₂/reactant mole ratio = 3; $T = 80^{\circ}$ C for phenol, 55°C for toluene and benzene oxidation. Products were analysed by HP-5890 GC (OV.17 column). Solvent: water (5 ml) for phenol, acetonitrile (12 ml) for toluene, acetone (12 ml) for benzene. Reaction time: 5 h for phenol, 12 h for toluene and benzene.

CrAPO-11, reduced CrAPO-11 gives a comparatively higher amount of hydroxy compounds.

References

- [1] N. Azuma, C.W. Lee and L. Kevan, J. Phys. Chem. 98 (1994) 1217
- [2] G. Brouet, X. Chen and L. Kevan, J. Phys. Chem. 95 (1991) 4928
- [3] C. Montes, M.E. Davis, B. Murray and M. Narayana, J. Phys. Chem. 94 (1990) 6425.
- [4] J. Meusinger, H. Vinek and J.R. Lercher, J. Mol. Catal. 87 (1994) 263.
- [5] G.C. Bond, M.R. Gelsthorpe, K.S.W. Sing and C.R. Theocharis, J. Chem. Soc. Chem. Commun. (1985) 1056.
- [6] E.M. Flanigen, B.M. Lok, R.L. Patton and S.T. Wilson, Pure Appl. Chem. 58 (1986) 1351.
- [7] N. Ulagappan and V. Krishnasamy, J. Chem. Soc. Chem. Commun. (1995) 373.
- [8] J. Chen, J. Dakka, E. Neeleman and R.A. Sheldon, J. Chem. Soc. Chem. Commun. (1993) 1379.
- [9] J. Kornalowski, G. Finger, J. Richter-Mendau, D. Schultze, W. Joswig and W.H. Baur, J. Chem. Soc. Faraday Trans. 90 (1994) 2141.

- [10] C.V. Davanzo, H. Vargas, E. Silva and O. Nakamura, J. Chem. Soc. Chem. Commun. (1991) 922.
- [11] B.Z. Wan, K. Huang, T.C. Yang and C.Y. Tai, J. Chin. Inst. Chem. Eng. 22 (1991) 17.
- [12] P.J. Grobet, J.A. Martens, I. Balakrishnan, M. Mertens and P.A. Jacobs, Appl. Catal. 56 (1989) L21.
- [13] M. Goepper, F. Guth, L. Delmotte, J.L. Guth and H. Kessler, Stud. Surf. Sci. Catal. 49A (1989) 857.
- [14] F. Vogt, H. Bremer, A.M. Rubinstejn, M.I. Dasevskij, A.A. Shinkin and A.L. Klajcko, Z. Anorg. Allg. Chem. A 23 (1976) 155.
- [15] T. Chapus, A. Tuel, Y. Ben Taarit and C. Naccache, Zeolites 14 (1994) 349.
- [16] E.Z. Arlidge, V.C. Farmer and B.D. Mitchell, J. Appl. Chem. 13 (1963) 17.
- [17] A. Cimino, D. Cordischi, S. Febbaro, D. Gazzoli, V. Indovina, M. Occhiuzzi, M. Valigi, F. Boccuzzi, A. Chiorino and G. Ghiotti, J. Mol. Catal. 55 (1989) 23.
- [18] A. Ojo and L. McCusker, Zeolites 11 (1991) 460.
- [19] L.M. Parker, D.M. Bibby and J.E. Patterson, Zeolites 4 (1984) 168.
- [20] C.W. Lee, X. Chen, G. Brouet and L. Kevan, J. Phys. Chem. 96 (1992) 3110.
- [21] J.D. Chen, J. Dakka and R.A. Sheldon, Appl. Catal. A 108 (1994) L1.